![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elin | GIF version |
Description: Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
elin | ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2566 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ V) | |
2 | elex 2566 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
3 | 2 | adantl 262 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
4 | eleq1 2100 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
5 | eleq1 2100 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
6 | 4, 5 | anbi12d 442 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
7 | df-in 2924 | . . 3 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)} | |
8 | 6, 7 | elab2g 2689 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
9 | 1, 3, 8 | pm5.21nii 620 | 1 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 ↔ wb 98 = wceq 1243 ∈ wcel 1393 Vcvv 2557 ∩ cin 2916 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-in 2924 |
This theorem is referenced by: elin2 3127 elin3 3128 incom 3129 ineqri 3130 ineq1 3131 inass 3147 inss1 3157 ssin 3159 ssrin 3162 inssdif 3173 difin 3174 unssin 3176 inssun 3177 invdif 3179 indif 3180 indi 3184 undi 3185 difundi 3189 difindiss 3191 indifdir 3193 difin2 3199 inrab2 3210 inelcm 3282 inssdif0im 3291 uniin 3600 intun 3646 intpr 3647 elrint 3655 iunin2 3720 iinin2m 3725 elriin 3727 brin 3811 trin 3864 inex1 3891 inuni 3909 bnd2 3926 ordpwsucss 4291 ordpwsucexmid 4294 peano5 4321 inopab 4468 inxp 4470 dmin 4543 opelres 4617 intasym 4709 asymref 4710 dminss 4738 imainss 4739 inimasn 4741 ssrnres 4763 cnvresima 4810 dfco2a 4821 imainlem 4980 imain 4981 2elresin 5010 nfvres 5206 respreima 5295 isoini 5457 offval 5719 tfrlem5 5930 peano5nnnn 6966 peano5nni 7917 ixxdisj 8772 icodisj 8860 fzdisj 8916 uzdisj 8955 nn0disj 8995 fzouzdisj 9036 bdinex1 10019 bj-indind 10056 peano5setOLD 10065 |
Copyright terms: Public domain | W3C validator |