Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvuni GIF version

Theorem cnvuni 4521
 Description: The converse of a class union is the (indexed) union of the converses of its members. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
cnvuni 𝐴 = 𝑥𝐴 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnvuni
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcnv2 4513 . . . 4 (𝑦 𝐴 ↔ ∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝐴))
2 eluni2 3584 . . . . . . 7 (⟨𝑤, 𝑧⟩ ∈ 𝐴 ↔ ∃𝑥𝐴𝑤, 𝑧⟩ ∈ 𝑥)
32anbi2i 430 . . . . . 6 ((𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝐴) ↔ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ∃𝑥𝐴𝑤, 𝑧⟩ ∈ 𝑥))
4 r19.42v 2467 . . . . . 6 (∃𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ∃𝑥𝐴𝑤, 𝑧⟩ ∈ 𝑥))
53, 4bitr4i 176 . . . . 5 ((𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝐴) ↔ ∃𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
652exbii 1497 . . . 4 (∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝐴) ↔ ∃𝑧𝑤𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
7 elcnv2 4513 . . . . . 6 (𝑦𝑥 ↔ ∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
87rexbii 2331 . . . . 5 (∃𝑥𝐴 𝑦𝑥 ↔ ∃𝑥𝐴𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
9 rexcom4 2577 . . . . 5 (∃𝑥𝐴𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ ∃𝑧𝑥𝐴𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
10 rexcom4 2577 . . . . . 6 (∃𝑥𝐴𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ ∃𝑤𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
1110exbii 1496 . . . . 5 (∃𝑧𝑥𝐴𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ ∃𝑧𝑤𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
128, 9, 113bitrri 196 . . . 4 (∃𝑧𝑤𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ ∃𝑥𝐴 𝑦𝑥)
131, 6, 123bitri 195 . . 3 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
14 eliun 3661 . . 3 (𝑦 𝑥𝐴 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
1513, 14bitr4i 176 . 2 (𝑦 𝐴𝑦 𝑥𝐴 𝑥)
1615eqriv 2037 1 𝐴 = 𝑥𝐴 𝑥
 Colors of variables: wff set class Syntax hints:   ∧ wa 97   = wceq 1243  ∃wex 1381   ∈ wcel 1393  ∃wrex 2307  ⟨cop 3378  ∪ cuni 3580  ∪ ciun 3657  ◡ccnv 4344 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-cnv 4353 This theorem is referenced by:  funcnvuni  4968
 Copyright terms: Public domain W3C validator