ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunab Structured version   GIF version

Theorem iunab 3677
Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.)
Assertion
Ref Expression
iunab x A {yφ} = {yx A φ}
Distinct variable groups:   y,A   x,y
Allowed substitution hints:   φ(x,y)   A(x)

Proof of Theorem iunab
StepHypRef Expression
1 nfcv 2160 . . . 4 yA
2 nfab1 2162 . . . 4 y{yφ}
31, 2nfiunxy 3657 . . 3 y x A {yφ}
4 nfab1 2162 . . 3 y{yx A φ}
53, 4cleqf 2183 . 2 ( x A {yφ} = {yx A φ} ↔ y(y x A {yφ} ↔ y {yx A φ}))
6 abid 2010 . . . 4 (y {yφ} ↔ φ)
76rexbii 2309 . . 3 (x A y {yφ} ↔ x A φ)
8 eliun 3635 . . 3 (y x A {yφ} ↔ x A y {yφ})
9 abid 2010 . . 3 (y {yx A φ} ↔ x A φ)
107, 8, 93bitr4i 201 . 2 (y x A {yφ} ↔ y {yx A φ})
115, 10mpgbir 1322 1 x A {yφ} = {yx A φ}
Colors of variables: wff set class
Syntax hints:  wb 98   = wceq 1228   wcel 1374  {cab 2008  wrex 2285   ciun 3631
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-ral 2289  df-rex 2290  df-v 2537  df-iun 3633
This theorem is referenced by:  iunrab  3678  iunid  3686  dfimafn2  5148
  Copyright terms: Public domain W3C validator