ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpiundi GIF version

Theorem xpiundi 4398
Description: Distributive law for cross product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
xpiundi (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem xpiundi
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom 2474 . . . 4 (∃𝑤𝐶𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑥𝐴𝑤𝐶𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
2 eliun 3661 . . . . . . . 8 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
32anbi1i 431 . . . . . . 7 ((𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ (∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
43exbii 1496 . . . . . 6 (∃𝑦(𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ ∃𝑦(∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
5 df-rex 2312 . . . . . 6 (∃𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑦(𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩))
6 df-rex 2312 . . . . . . . 8 (∃𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑦(𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
76rexbii 2331 . . . . . . 7 (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑥𝐴𝑦(𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
8 rexcom4 2577 . . . . . . 7 (∃𝑥𝐴𝑦(𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ ∃𝑦𝑥𝐴 (𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
9 r19.41v 2466 . . . . . . . 8 (∃𝑥𝐴 (𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ (∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
109exbii 1496 . . . . . . 7 (∃𝑦𝑥𝐴 (𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ ∃𝑦(∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
117, 8, 103bitri 195 . . . . . 6 (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑦(∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
124, 5, 113bitr4i 201 . . . . 5 (∃𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
1312rexbii 2331 . . . 4 (∃𝑤𝐶𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑤𝐶𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
14 elxp2 4363 . . . . 5 (𝑧 ∈ (𝐶 × 𝐵) ↔ ∃𝑤𝐶𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
1514rexbii 2331 . . . 4 (∃𝑥𝐴 𝑧 ∈ (𝐶 × 𝐵) ↔ ∃𝑥𝐴𝑤𝐶𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
161, 13, 153bitr4i 201 . . 3 (∃𝑤𝐶𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑥𝐴 𝑧 ∈ (𝐶 × 𝐵))
17 elxp2 4363 . . 3 (𝑧 ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ ∃𝑤𝐶𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩)
18 eliun 3661 . . 3 (𝑧 𝑥𝐴 (𝐶 × 𝐵) ↔ ∃𝑥𝐴 𝑧 ∈ (𝐶 × 𝐵))
1916, 17, 183bitr4i 201 . 2 (𝑧 ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ 𝑧 𝑥𝐴 (𝐶 × 𝐵))
2019eqriv 2037 1 (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 97   = wceq 1243  wex 1381  wcel 1393  wrex 2307  cop 3378   ciun 3657   × cxp 4343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-iun 3659  df-opab 3819  df-xp 4351
This theorem is referenced by:  xpexgALT  5760
  Copyright terms: Public domain W3C validator