ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpiundi Structured version   GIF version

Theorem xpiundi 4341
Description: Distributive law for cross product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
xpiundi (𝐶 × x A B) = x A (𝐶 × B)
Distinct variable group:   x,𝐶
Allowed substitution hints:   A(x)   B(x)

Proof of Theorem xpiundi
Dummy variables y w z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom 2468 . . . 4 (w 𝐶 x A y B z = ⟨w, y⟩ ↔ x A w 𝐶 y B z = ⟨w, y⟩)
2 eliun 3652 . . . . . . . 8 (y x A Bx A y B)
32anbi1i 431 . . . . . . 7 ((y x A B z = ⟨w, y⟩) ↔ (x A y B z = ⟨w, y⟩))
43exbii 1493 . . . . . 6 (y(y x A B z = ⟨w, y⟩) ↔ y(x A y B z = ⟨w, y⟩))
5 df-rex 2306 . . . . . 6 (y x A Bz = ⟨w, y⟩ ↔ y(y x A B z = ⟨w, y⟩))
6 df-rex 2306 . . . . . . . 8 (y B z = ⟨w, y⟩ ↔ y(y B z = ⟨w, y⟩))
76rexbii 2325 . . . . . . 7 (x A y B z = ⟨w, y⟩ ↔ x A y(y B z = ⟨w, y⟩))
8 rexcom4 2571 . . . . . . 7 (x A y(y B z = ⟨w, y⟩) ↔ yx A (y B z = ⟨w, y⟩))
9 r19.41v 2460 . . . . . . . 8 (x A (y B z = ⟨w, y⟩) ↔ (x A y B z = ⟨w, y⟩))
109exbii 1493 . . . . . . 7 (yx A (y B z = ⟨w, y⟩) ↔ y(x A y B z = ⟨w, y⟩))
117, 8, 103bitri 195 . . . . . 6 (x A y B z = ⟨w, y⟩ ↔ y(x A y B z = ⟨w, y⟩))
124, 5, 113bitr4i 201 . . . . 5 (y x A Bz = ⟨w, y⟩ ↔ x A y B z = ⟨w, y⟩)
1312rexbii 2325 . . . 4 (w 𝐶 y x A Bz = ⟨w, y⟩ ↔ w 𝐶 x A y B z = ⟨w, y⟩)
14 elxp2 4306 . . . . 5 (z (𝐶 × B) ↔ w 𝐶 y B z = ⟨w, y⟩)
1514rexbii 2325 . . . 4 (x A z (𝐶 × B) ↔ x A w 𝐶 y B z = ⟨w, y⟩)
161, 13, 153bitr4i 201 . . 3 (w 𝐶 y x A Bz = ⟨w, y⟩ ↔ x A z (𝐶 × B))
17 elxp2 4306 . . 3 (z (𝐶 × x A B) ↔ w 𝐶 y x A Bz = ⟨w, y⟩)
18 eliun 3652 . . 3 (z x A (𝐶 × B) ↔ x A z (𝐶 × B))
1916, 17, 183bitr4i 201 . 2 (z (𝐶 × x A B) ↔ z x A (𝐶 × B))
2019eqriv 2034 1 (𝐶 × x A B) = x A (𝐶 × B)
Colors of variables: wff set class
Syntax hints:   wa 97   = wceq 1242  wex 1378   wcel 1390  wrex 2301  cop 3370   ciun 3648   × cxp 4286
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-iun 3650  df-opab 3810  df-xp 4294
This theorem is referenced by:  xpexgALT  5702
  Copyright terms: Public domain W3C validator