ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnasrn Structured version   GIF version

Theorem fnasrn 5284
Description: A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfmpt.1 B V
Assertion
Ref Expression
fnasrn (x AB) = ran (x A ↦ ⟨x, B⟩)

Proof of Theorem fnasrn
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 dfmpt.1 . . 3 B V
21dfmpt 5283 . 2 (x AB) = x A {⟨x, B⟩}
3 eqid 2037 . . . . 5 (x A ↦ ⟨x, B⟩) = (x A ↦ ⟨x, B⟩)
43rnmpt 4525 . . . 4 ran (x A ↦ ⟨x, B⟩) = {yx A y = ⟨x, B⟩}
5 elsn 3382 . . . . . 6 (y {⟨x, B⟩} ↔ y = ⟨x, B⟩)
65rexbii 2325 . . . . 5 (x A y {⟨x, B⟩} ↔ x A y = ⟨x, B⟩)
76abbii 2150 . . . 4 {yx A y {⟨x, B⟩}} = {yx A y = ⟨x, B⟩}
84, 7eqtr4i 2060 . . 3 ran (x A ↦ ⟨x, B⟩) = {yx A y {⟨x, B⟩}}
9 df-iun 3650 . . 3 x A {⟨x, B⟩} = {yx A y {⟨x, B⟩}}
108, 9eqtr4i 2060 . 2 ran (x A ↦ ⟨x, B⟩) = x A {⟨x, B⟩}
112, 10eqtr4i 2060 1 (x AB) = ran (x A ↦ ⟨x, B⟩)
Colors of variables: wff set class
Syntax hints:   = wceq 1242   wcel 1390  {cab 2023  wrex 2301  Vcvv 2551  {csn 3367  cop 3370   ciun 3648  cmpt 3809  ran crn 4289
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-reu 2307  df-v 2553  df-sbc 2759  df-csb 2847  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-iun 3650  df-br 3756  df-opab 3810  df-mpt 3811  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-fun 4847  df-fn 4848  df-f 4849  df-f1 4850  df-fo 4851  df-f1o 4852
This theorem is referenced by:  idref  5339
  Copyright terms: Public domain W3C validator