ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfraldxy Structured version   GIF version

Theorem nfraldxy 2350
Description: Not-free for restricted universal quantification where x and y are distinct. See nfraldya 2352 for a version with y and A distinct instead. (Contributed by Jim Kingdon, 29-May-2018.)
Hypotheses
Ref Expression
nfraldxy.2 yφ
nfraldxy.3 (φxA)
nfraldxy.4 (φ → Ⅎxψ)
Assertion
Ref Expression
nfraldxy (φ → Ⅎxy A ψ)
Distinct variable group:   x,y
Allowed substitution hints:   φ(x,y)   ψ(x,y)   A(x,y)

Proof of Theorem nfraldxy
StepHypRef Expression
1 df-ral 2305 . 2 (y A ψy(y Aψ))
2 nfraldxy.2 . . 3 yφ
3 nfcv 2175 . . . . . 6 xy
43a1i 9 . . . . 5 (φxy)
5 nfraldxy.3 . . . . 5 (φxA)
64, 5nfeld 2190 . . . 4 (φ → Ⅎx y A)
7 nfraldxy.4 . . . 4 (φ → Ⅎxψ)
86, 7nfimd 1474 . . 3 (φ → Ⅎx(y Aψ))
92, 8nfald 1640 . 2 (φ → Ⅎxy(y Aψ))
101, 9nfxfrd 1361 1 (φ → Ⅎxy A ψ)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1240  wnf 1346   wcel 1390  wnfc 2162  wral 2300
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-17 1416  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305
This theorem is referenced by:  nfraldya  2352  nfralxy  2354
  Copyright terms: Public domain W3C validator