HomeHome Intuitionistic Logic Explorer
Theorem List (p. 80 of 95)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7901-8000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem8th4div3 7901 An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.)
((1 / 8) · (4 / 3)) = (1 / 6)
 
Theoremhalfpm6th 7902 One half plus or minus one sixth. (Contributed by Paul Chapman, 17-Jan-2008.)
(((1 / 2) − (1 / 6)) = (1 / 3) ((1 / 2) + (1 / 6)) = (2 / 3))
 
Theoremit0e0 7903 i times 0 equals 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(i · 0) = 0
 
Theorem2mulicn 7904 (2 · i) (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(2 · i)
 
Theoremiap0 7905 The imaginary unit i is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.)
i # 0
 
Theorem2muliap0 7906 2 · i is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.)
(2 · i) # 0
 
Theorem2muline0 7907 (2 · i) ≠ 0. See also 2muliap0 7906. (Contributed by David A. Wheeler, 8-Dec-2018.)
(2 · i) ≠ 0
 
3.4.5  Simple number properties
 
Theoremhalfcl 7908 Closure of half of a number (common case). (Contributed by NM, 1-Jan-2006.)
(A ℂ → (A / 2) ℂ)
 
Theoremrehalfcl 7909 Real closure of half. (Contributed by NM, 1-Jan-2006.)
(A ℝ → (A / 2) ℝ)
 
Theoremhalf0 7910 Half of a number is zero iff the number is zero. (Contributed by NM, 20-Apr-2006.)
(A ℂ → ((A / 2) = 0 ↔ A = 0))
 
Theorem2halves 7911 Two halves make a whole. (Contributed by NM, 11-Apr-2005.)
(A ℂ → ((A / 2) + (A / 2)) = A)
 
Theoremhalfpos2 7912 A number is positive iff its half is positive. (Contributed by NM, 10-Apr-2005.)
(A ℝ → (0 < A ↔ 0 < (A / 2)))
 
Theoremhalfpos 7913 A positive number is greater than its half. (Contributed by NM, 28-Oct-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(A ℝ → (0 < A ↔ (A / 2) < A))
 
Theoremhalfnneg2 7914 A number is nonnegative iff its half is nonnegative. (Contributed by NM, 9-Dec-2005.)
(A ℝ → (0 ≤ A ↔ 0 ≤ (A / 2)))
 
Theoremhalfaddsubcl 7915 Closure of half-sum and half-difference. (Contributed by Paul Chapman, 12-Oct-2007.)
((A B ℂ) → (((A + B) / 2) ((AB) / 2) ℂ))
 
Theoremhalfaddsub 7916 Sum and difference of half-sum and half-difference. (Contributed by Paul Chapman, 12-Oct-2007.)
((A B ℂ) → ((((A + B) / 2) + ((AB) / 2)) = A (((A + B) / 2) − ((AB) / 2)) = B))
 
Theoremlt2halves 7917 A sum is less than the whole if each term is less than half. (Contributed by NM, 13-Dec-2006.)
((A B 𝐶 ℝ) → ((A < (𝐶 / 2) B < (𝐶 / 2)) → (A + B) < 𝐶))
 
Theoremaddltmul 7918 Sum is less than product for numbers greater than 2. (Contributed by Stefan Allan, 24-Sep-2010.)
(((A B ℝ) (2 < A 2 < B)) → (A + B) < (A · B))
 
Theoremnominpos 7919* There is no smallest positive real number. (Contributed by NM, 28-Oct-2004.)
¬ x ℝ (0 < x ¬ y ℝ (0 < y y < x))
 
Theoremavglt1 7920 Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014.)
((A B ℝ) → (A < BA < ((A + B) / 2)))
 
Theoremavglt2 7921 Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014.)
((A B ℝ) → (A < B ↔ ((A + B) / 2) < B))
 
Theoremavgle1 7922 Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014.)
((A B ℝ) → (ABA ≤ ((A + B) / 2)))
 
Theoremavgle2 7923 Ordering property for average. (Contributed by Jeff Hankins, 15-Sep-2013.) (Revised by Mario Carneiro, 28-May-2014.)
((A B ℝ) → (AB ↔ ((A + B) / 2) ≤ B))
 
Theorem2timesd 7924 Two times a number. (Contributed by Mario Carneiro, 27-May-2016.)
(φA ℂ)       (φ → (2 · A) = (A + A))
 
Theoremtimes2d 7925 A number times 2. (Contributed by Mario Carneiro, 27-May-2016.)
(φA ℂ)       (φ → (A · 2) = (A + A))
 
Theoremhalfcld 7926 Closure of half of a number (frequently used special case). (Contributed by Mario Carneiro, 27-May-2016.)
(φA ℂ)       (φ → (A / 2) ℂ)
 
Theorem2halvesd 7927 Two halves make a whole. (Contributed by Mario Carneiro, 27-May-2016.)
(φA ℂ)       (φ → ((A / 2) + (A / 2)) = A)
 
Theoremrehalfcld 7928 Real closure of half. (Contributed by Mario Carneiro, 27-May-2016.)
(φA ℝ)       (φ → (A / 2) ℝ)
 
Theoremlt2halvesd 7929 A sum is less than the whole if each term is less than half. (Contributed by Mario Carneiro, 27-May-2016.)
(φA ℝ)    &   (φB ℝ)    &   (φ𝐶 ℝ)    &   (φA < (𝐶 / 2))    &   (φB < (𝐶 / 2))       (φ → (A + B) < 𝐶)
 
Theoremrehalfcli 7930 Half a real number is real. Inference form. (Contributed by David Moews, 28-Feb-2017.)
A        (A / 2)
 
Theoremadd1p1 7931 Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.)
(𝑁 ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))
 
Theoremsub1m1 7932 Subtracting two times 1 from a number. (Contributed by AV, 23-Oct-2018.)
(𝑁 ℂ → ((𝑁 − 1) − 1) = (𝑁 − 2))
 
Theoremcnm2m1cnm3 7933 Subtracting 2 and afterwards 1 from a number results in the difference between the number and 3. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
(A ℂ → ((A − 2) − 1) = (A − 3))
 
3.4.6  The Archimedean property
 
Theoremarch 7934* Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
(A ℝ → 𝑛 A < 𝑛)
 
Theoremnnrecl 7935* There exists a positive integer whose reciprocal is less than a given positive real. Exercise 3 of [Apostol] p. 28. (Contributed by NM, 8-Nov-2004.)
((A 0 < A) → 𝑛 ℕ (1 / 𝑛) < A)
 
Theorembndndx 7936* A bounded real sequence A(𝑘) is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008.)
(x 𝑘 ℕ (A Ax) → 𝑘 A𝑘)
 
3.4.7  Nonnegative integers (as a subset of complex numbers)
 
Syntaxcn0 7937 Extend class notation to include the class of nonnegative integers.
class 0
 
Definitiondf-n0 7938 Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
0 = (ℕ ∪ {0})
 
Theoremelnn0 7939 Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.)
(A 0 ↔ (A A = 0))
 
Theoremnnssnn0 7940 Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
ℕ ⊆ ℕ0
 
Theoremnn0ssre 7941 Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.)
0 ⊆ ℝ
 
Theoremnn0sscn 7942 Nonnegative integers are a subset of the complex numbers.) (Contributed by NM, 9-May-2004.)
0 ⊆ ℂ
 
Theoremnn0ex 7943 The set of nonnegative integers exists. (Contributed by NM, 18-Jul-2004.)
0 V
 
Theoremnnnn0 7944 A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.)
(A ℕ → A 0)
 
Theoremnnnn0i 7945 A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.)
𝑁        𝑁 0
 
Theoremnn0re 7946 A nonnegative integer is a real number. (Contributed by NM, 9-May-2004.)
(A 0A ℝ)
 
Theoremnn0cn 7947 A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.)
(A 0A ℂ)
 
Theoremnn0rei 7948 A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.)
A 0       A
 
Theoremnn0cni 7949 A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.)
A 0       A
 
Theoremdfn2 7950 The set of positive integers defined in terms of nonnegative integers. (Contributed by NM, 23-Sep-2007.) (Proof shortened by Mario Carneiro, 13-Feb-2013.)
ℕ = (ℕ0 ∖ {0})
 
Theoremelnnne0 7951 The positive integer property expressed in terms of difference from zero. (Contributed by Stefan O'Rear, 12-Sep-2015.)
(𝑁 ℕ ↔ (𝑁 0 𝑁 ≠ 0))
 
Theorem0nn0 7952 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.)
0 0
 
Theorem1nn0 7953 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.)
1 0
 
Theorem2nn0 7954 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.)
2 0
 
Theorem3nn0 7955 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
3 0
 
Theorem4nn0 7956 4 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
4 0
 
Theorem5nn0 7957 5 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
5 0
 
Theorem6nn0 7958 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
6 0
 
Theorem7nn0 7959 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
7 0
 
Theorem8nn0 7960 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
8 0
 
Theorem9nn0 7961 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
9 0
 
Theorem10nn0 7962 10 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
10 0
 
Theoremnn0ge0 7963 A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.)
(𝑁 0 → 0 ≤ 𝑁)
 
Theoremnn0nlt0 7964 A nonnegative integer is not less than zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
(A 0 → ¬ A < 0)
 
Theoremnn0ge0i 7965 Nonnegative integers are nonnegative. (Contributed by Raph Levien, 10-Dec-2002.)
𝑁 0       0 ≤ 𝑁
 
Theoremnn0le0eq0 7966 A nonnegative integer is less than or equal to zero iff it is equal to zero. (Contributed by NM, 9-Dec-2005.)
(𝑁 0 → (𝑁 ≤ 0 ↔ 𝑁 = 0))
 
Theoremnn0p1gt0 7967 A nonnegative integer increased by 1 is greater than 0. (Contributed by Alexander van der Vekens, 3-Oct-2018.)
(𝑁 0 → 0 < (𝑁 + 1))
 
Theoremnnnn0addcl 7968 A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((𝑀 𝑁 0) → (𝑀 + 𝑁) ℕ)
 
Theoremnn0nnaddcl 7969 A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005.)
((𝑀 0 𝑁 ℕ) → (𝑀 + 𝑁) ℕ)
 
Theorem0mnnnnn0 7970 The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.)
(𝑁 ℕ → (0 − 𝑁) ∉ ℕ0)
 
Theoremun0addcl 7971 If 𝑆 is closed under addition, then so is 𝑆 ∪ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.)
(φ𝑆 ⊆ ℂ)    &   𝑇 = (𝑆 ∪ {0})    &   ((φ (𝑀 𝑆 𝑁 𝑆)) → (𝑀 + 𝑁) 𝑆)       ((φ (𝑀 𝑇 𝑁 𝑇)) → (𝑀 + 𝑁) 𝑇)
 
Theoremun0mulcl 7972 If 𝑆 is closed under multiplication, then so is 𝑆 ∪ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.)
(φ𝑆 ⊆ ℂ)    &   𝑇 = (𝑆 ∪ {0})    &   ((φ (𝑀 𝑆 𝑁 𝑆)) → (𝑀 · 𝑁) 𝑆)       ((φ (𝑀 𝑇 𝑁 𝑇)) → (𝑀 · 𝑁) 𝑇)
 
Theoremnn0addcl 7973 Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
((𝑀 0 𝑁 0) → (𝑀 + 𝑁) 0)
 
Theoremnn0mulcl 7974 Closure of multiplication of nonnegative integers. (Contributed by NM, 22-Jul-2004.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
((𝑀 0 𝑁 0) → (𝑀 · 𝑁) 0)
 
Theoremnn0addcli 7975 Closure of addition of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.)
𝑀 0    &   𝑁 0       (𝑀 + 𝑁) 0
 
Theoremnn0mulcli 7976 Closure of multiplication of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.)
𝑀 0    &   𝑁 0       (𝑀 · 𝑁) 0
 
Theoremnn0p1nn 7977 A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.)
(𝑁 0 → (𝑁 + 1) ℕ)
 
Theorempeano2nn0 7978 Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.)
(𝑁 0 → (𝑁 + 1) 0)
 
Theoremnnm1nn0 7979 A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.)
(𝑁 ℕ → (𝑁 − 1) 0)
 
Theoremelnn0nn 7980 The nonnegative integer property expressed in terms of positive integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
(𝑁 0 ↔ (𝑁 (𝑁 + 1) ℕ))
 
Theoremelnnnn0 7981 The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-May-2004.)
(𝑁 ℕ ↔ (𝑁 (𝑁 − 1) 0))
 
Theoremelnnnn0b 7982 The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005.)
(𝑁 ℕ ↔ (𝑁 0 0 < 𝑁))
 
Theoremelnnnn0c 7983 The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-Jan-2006.)
(𝑁 ℕ ↔ (𝑁 0 1 ≤ 𝑁))
 
Theoremnn0addge1 7984 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
((A 𝑁 0) → A ≤ (A + 𝑁))
 
Theoremnn0addge2 7985 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
((A 𝑁 0) → A ≤ (𝑁 + A))
 
Theoremnn0addge1i 7986 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
A     &   𝑁 0       A ≤ (A + 𝑁)
 
Theoremnn0addge2i 7987 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
A     &   𝑁 0       A ≤ (𝑁 + A)
 
Theoremnn0le2xi 7988 A nonnegative integer is less than or equal to twice itself. (Contributed by Raph Levien, 10-Dec-2002.)
𝑁 0       𝑁 ≤ (2 · 𝑁)
 
Theoremnn0lele2xi 7989 'Less than or equal to' implies 'less than or equal to twice' for nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
𝑀 0    &   𝑁 0       (𝑁𝑀𝑁 ≤ (2 · 𝑀))
 
Theoremnn0supp 7990 Two ways to write the support of a function on 0. (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝐹:𝐼⟶ℕ0 → (𝐹 “ (V ∖ {0})) = (𝐹 “ ℕ))
 
Theoremnnnn0d 7991 A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.)
(φA ℕ)       (φA 0)
 
Theoremnn0red 7992 A nonnegative integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.)
(φA 0)       (φA ℝ)
 
Theoremnn0cnd 7993 A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.)
(φA 0)       (φA ℂ)
 
Theoremnn0ge0d 7994 A nonnegative integer is greater than or equal to zero. (Contributed by Mario Carneiro, 27-May-2016.)
(φA 0)       (φ → 0 ≤ A)
 
Theoremnn0addcld 7995 Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
(φA 0)    &   (φB 0)       (φ → (A + B) 0)
 
Theoremnn0mulcld 7996 Closure of multiplication of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
(φA 0)    &   (φB 0)       (φ → (A · B) 0)
 
Theoremnn0readdcl 7997 Closure law for addition of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018.)
((A 0 B 0) → (A + B) ℝ)
 
Theoremnn0ge2m1nn 7998 If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.)
((𝑁 0 2 ≤ 𝑁) → (𝑁 − 1) ℕ)
 
Theoremnn0ge2m1nn0 7999 If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is also a nonnegative integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.)
((𝑁 0 2 ≤ 𝑁) → (𝑁 − 1) 0)
 
Theoremnn0nndivcl 8000 Closure law for dividing of a nonnegative integer by a positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐾 0 𝐿 ℕ) → (𝐾 / 𝐿) ℝ)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9427
  Copyright terms: Public domain < Previous  Next >