Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elnn GIF version

Theorem 0elnn 4340
 Description: A natural number is either the empty set or has the empty set as an element. (Contributed by Jim Kingdon, 23-Aug-2019.)
Assertion
Ref Expression
0elnn (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))

Proof of Theorem 0elnn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2046 . . 3 (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅))
2 eleq2 2101 . . 3 (𝑥 = ∅ → (∅ ∈ 𝑥 ↔ ∅ ∈ ∅))
31, 2orbi12d 707 . 2 (𝑥 = ∅ → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (∅ = ∅ ∨ ∅ ∈ ∅)))
4 eqeq1 2046 . . 3 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
5 eleq2 2101 . . 3 (𝑥 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑦))
64, 5orbi12d 707 . 2 (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (𝑦 = ∅ ∨ ∅ ∈ 𝑦)))
7 eqeq1 2046 . . 3 (𝑥 = suc 𝑦 → (𝑥 = ∅ ↔ suc 𝑦 = ∅))
8 eleq2 2101 . . 3 (𝑥 = suc 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ suc 𝑦))
97, 8orbi12d 707 . 2 (𝑥 = suc 𝑦 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦)))
10 eqeq1 2046 . . 3 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
11 eleq2 2101 . . 3 (𝑥 = 𝐴 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝐴))
1210, 11orbi12d 707 . 2 (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)))
13 eqid 2040 . . 3 ∅ = ∅
1413orci 650 . 2 (∅ = ∅ ∨ ∅ ∈ ∅)
15 0ex 3884 . . . . . . 7 ∅ ∈ V
1615sucid 4154 . . . . . 6 ∅ ∈ suc ∅
17 suceq 4139 . . . . . 6 (𝑦 = ∅ → suc 𝑦 = suc ∅)
1816, 17syl5eleqr 2127 . . . . 5 (𝑦 = ∅ → ∅ ∈ suc 𝑦)
1918a1i 9 . . . 4 (𝑦 ∈ ω → (𝑦 = ∅ → ∅ ∈ suc 𝑦))
20 sssucid 4152 . . . . . 6 𝑦 ⊆ suc 𝑦
2120a1i 9 . . . . 5 (𝑦 ∈ ω → 𝑦 ⊆ suc 𝑦)
2221sseld 2944 . . . 4 (𝑦 ∈ ω → (∅ ∈ 𝑦 → ∅ ∈ suc 𝑦))
2319, 22jaod 637 . . 3 (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ∅ ∈ 𝑦) → ∅ ∈ suc 𝑦))
24 olc 632 . . 3 (∅ ∈ suc 𝑦 → (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦))
2523, 24syl6 29 . 2 (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ∅ ∈ 𝑦) → (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦)))
263, 6, 9, 12, 14, 25finds 4323 1 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∨ wo 629   = wceq 1243   ∈ wcel 1393   ⊆ wss 2917  ∅c0 3224  suc csuc 4102  ωcom 4313 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-iinf 4311 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-uni 3581  df-int 3616  df-suc 4108  df-iom 4314 This theorem is referenced by:  nn0eln0  4341  nnsucsssuc  6071  nntri3or  6072  nnm00  6102  ssfiexmid  6336  diffitest  6344  elni2  6412  enq0tr  6532
 Copyright terms: Public domain W3C validator