Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndivtr GIF version

Theorem nndivtr 7955
 Description: Transitive property of divisibility: if 𝐴 divides 𝐵 and 𝐵 divides 𝐶, then 𝐴 divides 𝐶. Typically, 𝐶 would be an integer, although the theorem holds for complex 𝐶. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
nndivtr (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ)) → (𝐶 / 𝐴) ∈ ℕ)

Proof of Theorem nndivtr
StepHypRef Expression
1 nnmulcl 7935 . . 3 (((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) ∈ ℕ)
2 nncn 7922 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
323ad2ant2 926 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
4 simp3 906 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
5 nncn 7922 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
6 nnap0 7943 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 # 0)
75, 6jca 290 . . . . . . 7 (𝐴 ∈ ℕ → (𝐴 ∈ ℂ ∧ 𝐴 # 0))
873ad2ant1 925 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝐴 # 0))
9 nnap0 7943 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 # 0)
102, 9jca 290 . . . . . . 7 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 # 0))
11103ad2ant2 926 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (𝐵 ∈ ℂ ∧ 𝐵 # 0))
12 divmul24ap 7692 . . . . . 6 (((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0))) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) = ((𝐵 / 𝐵) · (𝐶 / 𝐴)))
133, 4, 8, 11, 12syl22anc 1136 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) = ((𝐵 / 𝐵) · (𝐶 / 𝐴)))
142, 9dividapd 7762 . . . . . . 7 (𝐵 ∈ ℕ → (𝐵 / 𝐵) = 1)
1514oveq1d 5527 . . . . . 6 (𝐵 ∈ ℕ → ((𝐵 / 𝐵) · (𝐶 / 𝐴)) = (1 · (𝐶 / 𝐴)))
16153ad2ant2 926 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → ((𝐵 / 𝐵) · (𝐶 / 𝐴)) = (1 · (𝐶 / 𝐴)))
17 divclap 7657 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝐶 / 𝐴) ∈ ℂ)
18173expb 1105 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 # 0)) → (𝐶 / 𝐴) ∈ ℂ)
197, 18sylan2 270 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℕ) → (𝐶 / 𝐴) ∈ ℂ)
2019ancoms 255 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (𝐶 / 𝐴) ∈ ℂ)
2120mulid2d 7045 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (1 · (𝐶 / 𝐴)) = (𝐶 / 𝐴))
22213adant2 923 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (1 · (𝐶 / 𝐴)) = (𝐶 / 𝐴))
2313, 16, 223eqtrd 2076 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) = (𝐶 / 𝐴))
2423eleq1d 2106 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (((𝐵 / 𝐴) · (𝐶 / 𝐵)) ∈ ℕ ↔ (𝐶 / 𝐴) ∈ ℕ))
251, 24syl5ib 143 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ) → (𝐶 / 𝐴) ∈ ℕ))
2625imp 115 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ)) → (𝐶 / 𝐴) ∈ ℕ)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∧ w3a 885   = wceq 1243   ∈ wcel 1393   class class class wbr 3764  (class class class)co 5512  ℂcc 6887  0cc0 6889  1c1 6890   · cmul 6894   # cap 7572   / cdiv 7651  ℕcn 7914 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator