 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnindALT GIF version

Theorem nnindALT 7931
 Description: Principle of Mathematical Induction (inference schema). The last four hypotheses give us the substitution instances we need; the first two are the induction step and the basis. This ALT version of nnind 7930 has a different hypothesis order. It may be easier to use with the metamath program's Proof Assistant, because "MM-PA> assign last" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> minimize nnind /allow". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
nnindALT.6 (𝑦 ∈ ℕ → (𝜒𝜃))
nnindALT.5 𝜓
nnindALT.1 (𝑥 = 1 → (𝜑𝜓))
nnindALT.2 (𝑥 = 𝑦 → (𝜑𝜒))
nnindALT.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nnindALT.4 (𝑥 = 𝐴 → (𝜑𝜏))
Assertion
Ref Expression
nnindALT (𝐴 ∈ ℕ → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nnindALT
StepHypRef Expression
1 nnindALT.1 . 2 (𝑥 = 1 → (𝜑𝜓))
2 nnindALT.2 . 2 (𝑥 = 𝑦 → (𝜑𝜒))
3 nnindALT.3 . 2 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
4 nnindALT.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
5 nnindALT.5 . 2 𝜓
6 nnindALT.6 . 2 (𝑦 ∈ ℕ → (𝜒𝜃))
71, 2, 3, 4, 5, 6nnind 7930 1 (𝐴 ∈ ℕ → 𝜏)
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98   = wceq 1243   ∈ wcel 1393  (class class class)co 5512  1c1 6890   + caddc 6892  ℕcn 7914 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-cnex 6975  ax-resscn 6976  ax-1re 6978  ax-addrcl 6981 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515  df-inn 7915 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator