Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn1gt1 GIF version

Theorem nn1gt1 7947
 Description: A positive integer is either one or greater than one. This is for ℕ; 0elnn 4340 is a similar theorem for ω (the natural numbers as ordinals). (Contributed by Jim Kingdon, 7-Mar-2020.)
Assertion
Ref Expression
nn1gt1 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴))

Proof of Theorem nn1gt1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2046 . . 3 (𝑥 = 1 → (𝑥 = 1 ↔ 1 = 1))
2 breq2 3768 . . 3 (𝑥 = 1 → (1 < 𝑥 ↔ 1 < 1))
31, 2orbi12d 707 . 2 (𝑥 = 1 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (1 = 1 ∨ 1 < 1)))
4 eqeq1 2046 . . 3 (𝑥 = 𝑦 → (𝑥 = 1 ↔ 𝑦 = 1))
5 breq2 3768 . . 3 (𝑥 = 𝑦 → (1 < 𝑥 ↔ 1 < 𝑦))
64, 5orbi12d 707 . 2 (𝑥 = 𝑦 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (𝑦 = 1 ∨ 1 < 𝑦)))
7 eqeq1 2046 . . 3 (𝑥 = (𝑦 + 1) → (𝑥 = 1 ↔ (𝑦 + 1) = 1))
8 breq2 3768 . . 3 (𝑥 = (𝑦 + 1) → (1 < 𝑥 ↔ 1 < (𝑦 + 1)))
97, 8orbi12d 707 . 2 (𝑥 = (𝑦 + 1) → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1))))
10 eqeq1 2046 . . 3 (𝑥 = 𝐴 → (𝑥 = 1 ↔ 𝐴 = 1))
11 breq2 3768 . . 3 (𝑥 = 𝐴 → (1 < 𝑥 ↔ 1 < 𝐴))
1210, 11orbi12d 707 . 2 (𝑥 = 𝐴 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (𝐴 = 1 ∨ 1 < 𝐴)))
13 eqid 2040 . . 3 1 = 1
1413orci 650 . 2 (1 = 1 ∨ 1 < 1)
15 nngt0 7939 . . . . 5 (𝑦 ∈ ℕ → 0 < 𝑦)
16 nnre 7921 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
17 1re 7026 . . . . . 6 1 ∈ ℝ
18 ltaddpos2 7448 . . . . . 6 ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 𝑦 ↔ 1 < (𝑦 + 1)))
1916, 17, 18sylancl 392 . . . . 5 (𝑦 ∈ ℕ → (0 < 𝑦 ↔ 1 < (𝑦 + 1)))
2015, 19mpbid 135 . . . 4 (𝑦 ∈ ℕ → 1 < (𝑦 + 1))
2120olcd 653 . . 3 (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1)))
2221a1d 22 . 2 (𝑦 ∈ ℕ → ((𝑦 = 1 ∨ 1 < 𝑦) → ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1))))
233, 6, 9, 12, 14, 22nnind 7930 1 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98   ∨ wo 629   = wceq 1243   ∈ wcel 1393   class class class wbr 3764  (class class class)co 5512  ℝcr 6888  0cc0 6889  1c1 6890   + caddc 6892   < clt 7060  ℕcn 7914 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-inn 7915 This theorem is referenced by:  nngt1ne1  7948  resqrexlemglsq  9620
 Copyright terms: Public domain W3C validator