Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn1gt1 | GIF version |
Description: A positive integer is either one or greater than one. This is for ℕ; 0elnn 4340 is a similar theorem for ω (the natural numbers as ordinals). (Contributed by Jim Kingdon, 7-Mar-2020.) |
Ref | Expression |
---|---|
nn1gt1 | ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2046 | . . 3 ⊢ (𝑥 = 1 → (𝑥 = 1 ↔ 1 = 1)) | |
2 | breq2 3768 | . . 3 ⊢ (𝑥 = 1 → (1 < 𝑥 ↔ 1 < 1)) | |
3 | 1, 2 | orbi12d 707 | . 2 ⊢ (𝑥 = 1 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (1 = 1 ∨ 1 < 1))) |
4 | eqeq1 2046 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 1 ↔ 𝑦 = 1)) | |
5 | breq2 3768 | . . 3 ⊢ (𝑥 = 𝑦 → (1 < 𝑥 ↔ 1 < 𝑦)) | |
6 | 4, 5 | orbi12d 707 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (𝑦 = 1 ∨ 1 < 𝑦))) |
7 | eqeq1 2046 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (𝑥 = 1 ↔ (𝑦 + 1) = 1)) | |
8 | breq2 3768 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (1 < 𝑥 ↔ 1 < (𝑦 + 1))) | |
9 | 7, 8 | orbi12d 707 | . 2 ⊢ (𝑥 = (𝑦 + 1) → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1)))) |
10 | eqeq1 2046 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 1 ↔ 𝐴 = 1)) | |
11 | breq2 3768 | . . 3 ⊢ (𝑥 = 𝐴 → (1 < 𝑥 ↔ 1 < 𝐴)) | |
12 | 10, 11 | orbi12d 707 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (𝐴 = 1 ∨ 1 < 𝐴))) |
13 | eqid 2040 | . . 3 ⊢ 1 = 1 | |
14 | 13 | orci 650 | . 2 ⊢ (1 = 1 ∨ 1 < 1) |
15 | nngt0 7939 | . . . . 5 ⊢ (𝑦 ∈ ℕ → 0 < 𝑦) | |
16 | nnre 7921 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
17 | 1re 7026 | . . . . . 6 ⊢ 1 ∈ ℝ | |
18 | ltaddpos2 7448 | . . . . . 6 ⊢ ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 𝑦 ↔ 1 < (𝑦 + 1))) | |
19 | 16, 17, 18 | sylancl 392 | . . . . 5 ⊢ (𝑦 ∈ ℕ → (0 < 𝑦 ↔ 1 < (𝑦 + 1))) |
20 | 15, 19 | mpbid 135 | . . . 4 ⊢ (𝑦 ∈ ℕ → 1 < (𝑦 + 1)) |
21 | 20 | olcd 653 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1))) |
22 | 21 | a1d 22 | . 2 ⊢ (𝑦 ∈ ℕ → ((𝑦 = 1 ∨ 1 < 𝑦) → ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1)))) |
23 | 3, 6, 9, 12, 14, 22 | nnind 7930 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 ∨ wo 629 = wceq 1243 ∈ wcel 1393 class class class wbr 3764 (class class class)co 5512 ℝcr 6888 0cc0 6889 1c1 6890 + caddc 6892 < clt 7060 ℕcn 7914 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-coll 3872 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-iinf 4311 ax-cnex 6975 ax-resscn 6976 ax-1cn 6977 ax-1re 6978 ax-icn 6979 ax-addcl 6980 ax-addrcl 6981 ax-mulcl 6982 ax-addcom 6984 ax-addass 6986 ax-i2m1 6989 ax-0id 6992 ax-rnegex 6993 ax-pre-ltirr 6996 ax-pre-ltwlin 6997 ax-pre-lttrn 6998 ax-pre-ltadd 7000 |
This theorem depends on definitions: df-bi 110 df-dc 743 df-3or 886 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-nel 2207 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-tr 3855 df-eprel 4026 df-id 4030 df-po 4033 df-iso 4034 df-iord 4103 df-on 4105 df-suc 4108 df-iom 4314 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-1st 5767 df-2nd 5768 df-recs 5920 df-irdg 5957 df-1o 6001 df-2o 6002 df-oadd 6005 df-omul 6006 df-er 6106 df-ec 6108 df-qs 6112 df-ni 6402 df-pli 6403 df-mi 6404 df-lti 6405 df-plpq 6442 df-mpq 6443 df-enq 6445 df-nqqs 6446 df-plqqs 6447 df-mqqs 6448 df-1nqqs 6449 df-rq 6450 df-ltnqqs 6451 df-enq0 6522 df-nq0 6523 df-0nq0 6524 df-plq0 6525 df-mq0 6526 df-inp 6564 df-i1p 6565 df-iplp 6566 df-iltp 6568 df-enr 6811 df-nr 6812 df-ltr 6815 df-0r 6816 df-1r 6817 df-0 6896 df-1 6897 df-r 6899 df-lt 6902 df-pnf 7062 df-mnf 7063 df-xr 7064 df-ltxr 7065 df-le 7066 df-inn 7915 |
This theorem is referenced by: nngt1ne1 7948 resqrexlemglsq 9620 |
Copyright terms: Public domain | W3C validator |