ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn1m1nn GIF version

Theorem nn1m1nn 7932
Description: Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn1m1nn (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))

Proof of Theorem nn1m1nn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 633 . . 3 (𝑥 = 1 → (𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ))
2 1cnd 7043 . . 3 (𝑥 = 1 → 1 ∈ ℂ)
31, 22thd 164 . 2 (𝑥 = 1 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ 1 ∈ ℂ))
4 eqeq1 2046 . . 3 (𝑥 = 𝑦 → (𝑥 = 1 ↔ 𝑦 = 1))
5 oveq1 5519 . . . 4 (𝑥 = 𝑦 → (𝑥 − 1) = (𝑦 − 1))
65eleq1d 2106 . . 3 (𝑥 = 𝑦 → ((𝑥 − 1) ∈ ℕ ↔ (𝑦 − 1) ∈ ℕ))
74, 6orbi12d 707 . 2 (𝑥 = 𝑦 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ (𝑦 = 1 ∨ (𝑦 − 1) ∈ ℕ)))
8 eqeq1 2046 . . 3 (𝑥 = (𝑦 + 1) → (𝑥 = 1 ↔ (𝑦 + 1) = 1))
9 oveq1 5519 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 − 1) = ((𝑦 + 1) − 1))
109eleq1d 2106 . . 3 (𝑥 = (𝑦 + 1) → ((𝑥 − 1) ∈ ℕ ↔ ((𝑦 + 1) − 1) ∈ ℕ))
118, 10orbi12d 707 . 2 (𝑥 = (𝑦 + 1) → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ)))
12 eqeq1 2046 . . 3 (𝑥 = 𝐴 → (𝑥 = 1 ↔ 𝐴 = 1))
13 oveq1 5519 . . . 4 (𝑥 = 𝐴 → (𝑥 − 1) = (𝐴 − 1))
1413eleq1d 2106 . . 3 (𝑥 = 𝐴 → ((𝑥 − 1) ∈ ℕ ↔ (𝐴 − 1) ∈ ℕ))
1512, 14orbi12d 707 . 2 (𝑥 = 𝐴 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)))
16 ax-1cn 6977 . 2 1 ∈ ℂ
17 nncn 7922 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
18 pncan 7217 . . . . . 6 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) − 1) = 𝑦)
1917, 16, 18sylancl 392 . . . . 5 (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) = 𝑦)
20 id 19 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ)
2119, 20eqeltrd 2114 . . . 4 (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) ∈ ℕ)
2221olcd 653 . . 3 (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ))
2322a1d 22 . 2 (𝑦 ∈ ℕ → ((𝑦 = 1 ∨ (𝑦 − 1) ∈ ℕ) → ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ)))
243, 7, 11, 15, 16, 23nnind 7930 1 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 629   = wceq 1243  wcel 1393  (class class class)co 5512  cc 6887  1c1 6890   + caddc 6892  cmin 7182  cn 7914
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-sub 7184  df-inn 7915
This theorem is referenced by:  nn1suc  7933  nnsub  7952  nnm1nn0  8223  nn0ge2m1nn  8242
  Copyright terms: Public domain W3C validator