![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > olcd | GIF version |
Description: Deduction introducing a disjunct. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
Ref | Expression |
---|---|
orcd.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
olcd | ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcd.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | orcd 652 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
3 | 2 | orcomd 648 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 629 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: pm2.48 660 pm2.49 661 orim12i 676 pm1.5 682 dcan 842 dcor 843 sspsstrir 3046 regexmidlem1 4258 reg2exmidlema 4259 nn0suc 4327 nndceq0 4339 acexmidlem1 5508 nntri3or 6072 nntri2or2 6076 nndceq 6077 nndcel 6078 nnm00 6102 ssfiexmid 6336 diffitest 6344 fientri3 6353 mullocprlem 6668 recexprlemloc 6729 gt0ap0 7616 ltap 7622 recexaplem2 7633 nn1m1nn 7932 nn1gt1 7947 ltpnf 8702 mnflt 8704 xrltso 8717 expinnval 9258 exp0 9259 bj-nn0suc0 10075 |
Copyright terms: Public domain | W3C validator |