Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orc | GIF version |
Description: Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
orc | ⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜓)) | |
2 | jaob 631 | . . 3 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜓)) ↔ ((𝜑 → (𝜑 ∨ 𝜓)) ∧ (𝜓 → (𝜑 ∨ 𝜓)))) | |
3 | 1, 2 | mpbi 133 | . 2 ⊢ ((𝜑 → (𝜑 ∨ 𝜓)) ∧ (𝜓 → (𝜑 ∨ 𝜓))) |
4 | 3 | simpli 104 | 1 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∨ wo 629 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-io 630 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: pm2.67-2 634 pm1.4 646 orci 650 orcd 652 orcs 654 pm2.45 657 biorfi 665 pm1.5 682 pm2.4 695 pm4.44 696 pm4.45 698 pm3.48 699 pm2.76 721 orabs 727 ordi 729 andi 731 pm4.72 736 biort 738 dcim 784 pm2.54dc 790 pm4.78i 808 pm2.85dc 811 dcor 843 pm5.71dc 868 dedlema 876 3mix1 1073 xoranor 1268 19.33 1373 hbor 1438 nford 1459 19.30dc 1518 19.43 1519 19.32r 1570 moor 1971 r19.32r 2457 ssun1 3106 undif3ss 3198 reuun1 3219 prmg 3489 opthpr 3543 issod 4056 elelsuc 4146 ordtri2or2exmidlem 4251 regexmidlem1 4258 nndceq 6077 nndcel 6078 swoord1 6135 swoord2 6136 addlocprlem 6633 msqge0 7607 mulge0 7610 ltleap 7621 nn1m1nn 7932 elnnz 8255 zletric 8289 zlelttric 8290 zmulcl 8297 zdceq 8316 zdcle 8317 zdclt 8318 ltpnf 8702 xrlttri3 8718 fzdcel 8904 qletric 9099 qlelttric 9100 qdceq 9102 bj-nn0suc0 10075 |
Copyright terms: Public domain | W3C validator |