ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.48 GIF version

Theorem pm3.48 699
Description: Theorem *3.48 of [WhiteheadRussell] p. 114. (Contributed by NM, 28-Jan-1997.) (Revised by NM, 1-Dec-2012.)
Assertion
Ref Expression
pm3.48 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) → (𝜓𝜃)))

Proof of Theorem pm3.48
StepHypRef Expression
1 orc 633 . . 3 (𝜓 → (𝜓𝜃))
21imim2i 12 . 2 ((𝜑𝜓) → (𝜑 → (𝜓𝜃)))
3 olc 632 . . 3 (𝜃 → (𝜓𝜃))
43imim2i 12 . 2 ((𝜒𝜃) → (𝜒 → (𝜓𝜃)))
52, 4jaao 639 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) → (𝜓𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wo 629
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  orim12d  700
  Copyright terms: Public domain W3C validator