ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.76 Structured version   GIF version

Theorem pm2.76 708
Description: Theorem *2.76 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
pm2.76 ((φ (ψχ)) → ((φ ψ) → (φ χ)))

Proof of Theorem pm2.76
StepHypRef Expression
1 orc 620 . . 3 (φ → (φ χ))
21a1d 22 . 2 (φ → ((φ ψ) → (φ χ)))
3 orim2 690 . 2 ((ψχ) → ((φ ψ) → (φ χ)))
42, 3jaoi 623 1 ((φ (ψχ)) → ((φ ψ) → (φ χ)))
Colors of variables: wff set class
Syntax hints:  wi 4   wo 616
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  pm2.75  709  pm2.81  711  orimdidc  805  equs5or  1693
  Copyright terms: Public domain W3C validator