Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prmg | GIF version |
Description: A pair containing a set is inhabited. (Contributed by Jim Kingdon, 21-Sep-2018.) |
Ref | Expression |
---|---|
prmg | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snmg 3486 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴}) | |
2 | orc 633 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) | |
3 | velsn 3392 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
4 | vex 2560 | . . . . 5 ⊢ 𝑥 ∈ V | |
5 | 4 | elpr 3396 | . . . 4 ⊢ (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
6 | 2, 3, 5 | 3imtr4i 190 | . . 3 ⊢ (𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐴, 𝐵}) |
7 | 6 | eximi 1491 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝐴} → ∃𝑥 𝑥 ∈ {𝐴, 𝐵}) |
8 | 1, 7 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴, 𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 629 = wceq 1243 ∃wex 1381 ∈ wcel 1393 {csn 3375 {cpr 3376 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-sn 3381 df-pr 3382 |
This theorem is referenced by: prm 3491 opm 3971 onintexmid 4297 |
Copyright terms: Public domain | W3C validator |