![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orcd | GIF version |
Description: Deduction introducing a disjunct. (Contributed by NM, 20-Sep-2007.) |
Ref | Expression |
---|---|
orcd.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
orcd | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | orc 633 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜒)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 629 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-io 630 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: olcd 653 pm2.47 659 orim12i 676 dcor 843 sspsstrir 3046 undif3ss 3198 reg2exmidlema 4259 acexmidlem1 5508 poxp 5853 nntri2or2 6076 nnm00 6102 ssfiexmid 6336 diffitest 6344 fientri3 6353 nqprloc 6643 mullocprlem 6668 recexprlemloc 6729 ltxrlt 7085 zmulcl 8297 nn0lt2 8322 zeo 8343 xrltso 8717 expnegap0 9263 |
Copyright terms: Public domain | W3C validator |