Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcim GIF version

Theorem dcim 784
 Description: An implication between two decidable propositions is decidable. (Contributed by Jim Kingdon, 28-Mar-2018.)
Assertion
Ref Expression
dcim (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))

Proof of Theorem dcim
StepHypRef Expression
1 df-dc 743 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 df-dc 743 . . . . . . . 8 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
32anbi2i 430 . . . . . . 7 ((𝜑DECID 𝜓) ↔ (𝜑 ∧ (𝜓 ∨ ¬ 𝜓)))
4 andi 731 . . . . . . 7 ((𝜑 ∧ (𝜓 ∨ ¬ 𝜓)) ↔ ((𝜑𝜓) ∨ (𝜑 ∧ ¬ 𝜓)))
53, 4bitri 173 . . . . . 6 ((𝜑DECID 𝜓) ↔ ((𝜑𝜓) ∨ (𝜑 ∧ ¬ 𝜓)))
6 pm3.4 316 . . . . . . 7 ((𝜑𝜓) → (𝜑𝜓))
7 annimim 782 . . . . . . 7 ((𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
86, 7orim12i 676 . . . . . 6 (((𝜑𝜓) ∨ (𝜑 ∧ ¬ 𝜓)) → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
95, 8sylbi 114 . . . . 5 ((𝜑DECID 𝜓) → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
10 df-dc 743 . . . . 5 (DECID (𝜑𝜓) ↔ ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
119, 10sylibr 137 . . . 4 ((𝜑DECID 𝜓) → DECID (𝜑𝜓))
1211ex 108 . . 3 (𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
13 ax-in2 545 . . . . 5 𝜑 → (𝜑𝜓))
1413a1d 22 . . . 4 𝜑 → (DECID 𝜓 → (𝜑𝜓)))
15 orc 633 . . . . 5 ((𝜑𝜓) → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
1615, 10sylibr 137 . . . 4 ((𝜑𝜓) → DECID (𝜑𝜓))
1714, 16syl6 29 . . 3 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
1812, 17jaoi 636 . 2 ((𝜑 ∨ ¬ 𝜑) → (DECID 𝜓DECID (𝜑𝜓)))
191, 18sylbi 114 1 (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 97   ∨ wo 629  DECID wdc 742 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630 This theorem depends on definitions:  df-bi 110  df-dc 743 This theorem is referenced by:  pm4.79dc  809  pm5.11dc  815  dcbi  844  annimdc  845
 Copyright terms: Public domain W3C validator