Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.54dc Structured version   GIF version

Theorem pm2.54dc 783
 Description: Deriving disjunction from implication for a decidable proposition. Based on theorem *2.54 of [WhiteheadRussell] p. 107. The converse, pm2.53 628, holds whether the proposition is decidable or not. (Contributed by Jim Kingdon, 26-Mar-2018.)
Assertion
Ref Expression
pm2.54dc (DECID φ → ((¬ φψ) → (φ ψ)))

Proof of Theorem pm2.54dc
StepHypRef Expression
1 dcn 737 . 2 (DECID φDECID ¬ φ)
2 notnot2dc 742 . . . . 5 (DECID φ → (¬ ¬ φφ))
3 orc 620 . . . . 5 (φ → (φ ψ))
42, 3syl6 29 . . . 4 (DECID φ → (¬ ¬ φ → (φ ψ)))
54a1d 22 . . 3 (DECID φ → (DECID ¬ φ → (¬ ¬ φ → (φ ψ))))
6 olc 619 . . . 4 (ψ → (φ ψ))
76a1i 9 . . 3 (DECID φ → (ψ → (φ ψ)))
85, 7jaddc 754 . 2 (DECID φ → (DECID ¬ φ → ((¬ φψ) → (φ ψ))))
91, 8mpd 13 1 (DECID φ → ((¬ φψ) → (φ ψ)))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 616  DECID wdc 733 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-io 617 This theorem depends on definitions:  df-bi 110  df-dc 734 This theorem is referenced by:  dfordc  784  pm2.68dc  786  pm4.79dc  802  pm5.11dc  808
 Copyright terms: Public domain W3C validator