ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn1m1nn Unicode version

Theorem nn1m1nn 7932
Description: Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn1m1nn  |-  ( A  e.  NN  ->  ( A  =  1  \/  ( A  -  1
)  e.  NN ) )

Proof of Theorem nn1m1nn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 633 . . 3  |-  ( x  =  1  ->  (
x  =  1  \/  ( x  -  1 )  e.  NN ) )
2 1cnd 7043 . . 3  |-  ( x  =  1  ->  1  e.  CC )
31, 22thd 164 . 2  |-  ( x  =  1  ->  (
( x  =  1  \/  ( x  - 
1 )  e.  NN ) 
<->  1  e.  CC ) )
4 eqeq1 2046 . . 3  |-  ( x  =  y  ->  (
x  =  1  <->  y  =  1 ) )
5 oveq1 5519 . . . 4  |-  ( x  =  y  ->  (
x  -  1 )  =  ( y  - 
1 ) )
65eleq1d 2106 . . 3  |-  ( x  =  y  ->  (
( x  -  1 )  e.  NN  <->  ( y  -  1 )  e.  NN ) )
74, 6orbi12d 707 . 2  |-  ( x  =  y  ->  (
( x  =  1  \/  ( x  - 
1 )  e.  NN ) 
<->  ( y  =  1  \/  ( y  - 
1 )  e.  NN ) ) )
8 eqeq1 2046 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
x  =  1  <->  (
y  +  1 )  =  1 ) )
9 oveq1 5519 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
x  -  1 )  =  ( ( y  +  1 )  - 
1 ) )
109eleq1d 2106 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( x  -  1 )  e.  NN  <->  ( (
y  +  1 )  -  1 )  e.  NN ) )
118, 10orbi12d 707 . 2  |-  ( x  =  ( y  +  1 )  ->  (
( x  =  1  \/  ( x  - 
1 )  e.  NN ) 
<->  ( ( y  +  1 )  =  1  \/  ( ( y  +  1 )  - 
1 )  e.  NN ) ) )
12 eqeq1 2046 . . 3  |-  ( x  =  A  ->  (
x  =  1  <->  A  =  1 ) )
13 oveq1 5519 . . . 4  |-  ( x  =  A  ->  (
x  -  1 )  =  ( A  - 
1 ) )
1413eleq1d 2106 . . 3  |-  ( x  =  A  ->  (
( x  -  1 )  e.  NN  <->  ( A  -  1 )  e.  NN ) )
1512, 14orbi12d 707 . 2  |-  ( x  =  A  ->  (
( x  =  1  \/  ( x  - 
1 )  e.  NN ) 
<->  ( A  =  1  \/  ( A  - 
1 )  e.  NN ) ) )
16 ax-1cn 6977 . 2  |-  1  e.  CC
17 nncn 7922 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  CC )
18 pncan 7217 . . . . . 6  |-  ( ( y  e.  CC  /\  1  e.  CC )  ->  ( ( y  +  1 )  -  1 )  =  y )
1917, 16, 18sylancl 392 . . . . 5  |-  ( y  e.  NN  ->  (
( y  +  1 )  -  1 )  =  y )
20 id 19 . . . . 5  |-  ( y  e.  NN  ->  y  e.  NN )
2119, 20eqeltrd 2114 . . . 4  |-  ( y  e.  NN  ->  (
( y  +  1 )  -  1 )  e.  NN )
2221olcd 653 . . 3  |-  ( y  e.  NN  ->  (
( y  +  1 )  =  1  \/  ( ( y  +  1 )  -  1 )  e.  NN ) )
2322a1d 22 . 2  |-  ( y  e.  NN  ->  (
( y  =  1  \/  ( y  - 
1 )  e.  NN )  ->  ( ( y  +  1 )  =  1  \/  ( ( y  +  1 )  -  1 )  e.  NN ) ) )
243, 7, 11, 15, 16, 23nnind 7930 1  |-  ( A  e.  NN  ->  ( A  =  1  \/  ( A  -  1
)  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 629    = wceq 1243    e. wcel 1393  (class class class)co 5512   CCcc 6887   1c1 6890    + caddc 6892    - cmin 7182   NNcn 7914
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-sub 7184  df-inn 7915
This theorem is referenced by:  nn1suc  7933  nnsub  7952  nnm1nn0  8223  nn0ge2m1nn  8242
  Copyright terms: Public domain W3C validator