![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1cnd | GIF version |
Description: 1 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.) |
Ref | Expression |
---|---|
1cnd | ⊢ (𝜑 → 1 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 6977 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 1 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1393 ℂcc 6887 1c1 6890 |
This theorem was proved from axioms: ax-1 5 ax-mp 7 ax-1cn 6977 |
This theorem is referenced by: recrecap 7685 rec11ap 7686 rec11rap 7687 rerecclap 7706 recp1lt1 7865 nn1m1nn 7932 add1p1 8174 sub1m1 8175 cnm2m1cnm3 8176 div4p1lem1div2 8177 peano2z 8281 zaddcllempos 8282 peano2zm 8283 zaddcllemneg 8284 nn0n0n1ge2 8311 zneo 8339 peano5uzti 8346 lincmb01cmp 8871 iccf1o 8872 zpnn0elfzo1 9064 ubmelm1fzo 9082 fzoshftral 9094 qbtwnzlemstep 9103 rebtwn2zlemstep 9107 qbtwnrelemcalc 9110 flqaddz 9139 2tnp1ge0ge0 9143 ceiqm1l 9153 binom3 9366 zesq 9367 resqrexlemover 9608 absexpzap 9676 |
Copyright terms: Public domain | W3C validator |