ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnm2m1cnm3 GIF version

Theorem cnm2m1cnm3 8176
Description: Subtracting 2 and afterwards 1 from a number results in the difference between the number and 3. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
Assertion
Ref Expression
cnm2m1cnm3 (𝐴 ∈ ℂ → ((𝐴 − 2) − 1) = (𝐴 − 3))

Proof of Theorem cnm2m1cnm3
StepHypRef Expression
1 id 19 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
2 2cnd 7988 . . 3 (𝐴 ∈ ℂ → 2 ∈ ℂ)
3 1cnd 7043 . . 3 (𝐴 ∈ ℂ → 1 ∈ ℂ)
41, 2, 3subsub4d 7353 . 2 (𝐴 ∈ ℂ → ((𝐴 − 2) − 1) = (𝐴 − (2 + 1)))
5 2p1e3 8043 . . . 4 (2 + 1) = 3
65a1i 9 . . 3 (𝐴 ∈ ℂ → (2 + 1) = 3)
76oveq2d 5528 . 2 (𝐴 ∈ ℂ → (𝐴 − (2 + 1)) = (𝐴 − 3))
84, 7eqtrd 2072 1 (𝐴 ∈ ℂ → ((𝐴 − 2) − 1) = (𝐴 − 3))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1243  wcel 1393  (class class class)co 5512  cc 6887  1c1 6890   + caddc 6892  cmin 7182  2c2 7964  3c3 7965
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-sub 7184  df-2 7973  df-3 7974
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator