ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccf1o GIF version

Theorem iccf1o 8872
Description: Describe a bijection from [0, 1] to an arbitrary nontrivial closed interval [𝐴, 𝐵]. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
iccf1o.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
Assertion
Ref Expression
iccf1o ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴)))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem iccf1o
StepHypRef Expression
1 iccf1o.1 . 2 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
2 0re 7027 . . . . . . . . 9 0 ∈ ℝ
3 1re 7026 . . . . . . . . 9 1 ∈ ℝ
42, 3elicc2i 8808 . . . . . . . 8 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))
54simp1bi 919 . . . . . . 7 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℝ)
65adantl 262 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝑥 ∈ ℝ)
76recnd 7054 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
8 simpl2 908 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐵 ∈ ℝ)
98recnd 7054 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐵 ∈ ℂ)
107, 9mulcld 7047 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · 𝐵) ∈ ℂ)
11 ax-1cn 6977 . . . . . 6 1 ∈ ℂ
12 subcl 7210 . . . . . 6 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
1311, 7, 12sylancr 393 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (1 − 𝑥) ∈ ℂ)
14 simpl1 907 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐴 ∈ ℝ)
1514recnd 7054 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐴 ∈ ℂ)
1613, 15mulcld 7047 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 − 𝑥) · 𝐴) ∈ ℂ)
1710, 16addcomd 7164 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)) = (((1 − 𝑥) · 𝐴) + (𝑥 · 𝐵)))
18 lincmb01cmp 8871 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (((1 − 𝑥) · 𝐴) + (𝑥 · 𝐵)) ∈ (𝐴[,]𝐵))
1917, 18eqeltrd 2114 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)) ∈ (𝐴[,]𝐵))
20 simpr 103 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
21 simpl1 907 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
22 simpl2 908 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
23 elicc2 8807 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
24233adant3 924 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
2524biimpa 280 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
2625simp1d 916 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ)
27 eqid 2040 . . . . . . 7 (𝐴𝐴) = (𝐴𝐴)
28 eqid 2040 . . . . . . 7 (𝐵𝐴) = (𝐵𝐴)
2927, 28iccshftl 8864 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦𝐴) ∈ ((𝐴𝐴)[,](𝐵𝐴))))
3021, 22, 26, 21, 29syl22anc 1136 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦𝐴) ∈ ((𝐴𝐴)[,](𝐵𝐴))))
3120, 30mpbid 135 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦𝐴) ∈ ((𝐴𝐴)[,](𝐵𝐴)))
3226, 21resubcld 7379 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦𝐴) ∈ ℝ)
3332recnd 7054 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦𝐴) ∈ ℂ)
34 difrp 8619 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))
3534biimp3a 1235 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ+)
3635adantr 261 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐵𝐴) ∈ ℝ+)
3736rpcnd 8624 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐵𝐴) ∈ ℂ)
38 rpap0 8599 . . . . . 6 ((𝐵𝐴) ∈ ℝ+ → (𝐵𝐴) # 0)
3936, 38syl 14 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐵𝐴) # 0)
4033, 37, 39divcanap1d 7766 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) = (𝑦𝐴))
4137mul02d 7389 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (0 · (𝐵𝐴)) = 0)
4221recnd 7054 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℂ)
4342subidd 7310 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐴𝐴) = 0)
4441, 43eqtr4d 2075 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (0 · (𝐵𝐴)) = (𝐴𝐴))
4537mulid2d 7045 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (1 · (𝐵𝐴)) = (𝐵𝐴))
4644, 45oveq12d 5530 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))) = ((𝐴𝐴)[,](𝐵𝐴)))
4731, 40, 463eltr4d 2121 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))))
48 0red 7028 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 0 ∈ ℝ)
49 1red 7042 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 1 ∈ ℝ)
5032, 36rerpdivcld 8654 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝑦𝐴) / (𝐵𝐴)) ∈ ℝ)
51 eqid 2040 . . . . 5 (0 · (𝐵𝐴)) = (0 · (𝐵𝐴))
52 eqid 2040 . . . . 5 (1 · (𝐵𝐴)) = (1 · (𝐵𝐴))
5351, 52iccdil 8866 . . . 4 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (((𝑦𝐴) / (𝐵𝐴)) ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ+)) → (((𝑦𝐴) / (𝐵𝐴)) ∈ (0[,]1) ↔ (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
5448, 49, 50, 36, 53syl22anc 1136 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝑦𝐴) / (𝐵𝐴)) ∈ (0[,]1) ↔ (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
5547, 54mpbird 156 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝑦𝐴) / (𝐵𝐴)) ∈ (0[,]1))
56 eqcom 2042 . . . 4 (𝑥 = ((𝑦𝐴) / (𝐵𝐴)) ↔ ((𝑦𝐴) / (𝐵𝐴)) = 𝑥)
5733adantrl 447 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑦𝐴) ∈ ℂ)
587adantrr 448 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ ℂ)
5937adantrl 447 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐵𝐴) ∈ ℂ)
6039adantrl 447 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐵𝐴) # 0)
6157, 58, 59, 60divmulap3d 7799 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (((𝑦𝐴) / (𝐵𝐴)) = 𝑥 ↔ (𝑦𝐴) = (𝑥 · (𝐵𝐴))))
6256, 61syl5bb 181 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 = ((𝑦𝐴) / (𝐵𝐴)) ↔ (𝑦𝐴) = (𝑥 · (𝐵𝐴))))
6326adantrl 447 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℝ)
6463recnd 7054 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℂ)
6542adantrl 447 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝐴 ∈ ℂ)
668, 14resubcld 7379 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℝ)
676, 66remulcld 7056 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · (𝐵𝐴)) ∈ ℝ)
6867adantrr 448 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 · (𝐵𝐴)) ∈ ℝ)
6968recnd 7054 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 · (𝐵𝐴)) ∈ ℂ)
7064, 65, 69subadd2d 7341 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝑦𝐴) = (𝑥 · (𝐵𝐴)) ↔ ((𝑥 · (𝐵𝐴)) + 𝐴) = 𝑦))
71 eqcom 2042 . . . 4 (((𝑥 · (𝐵𝐴)) + 𝐴) = 𝑦𝑦 = ((𝑥 · (𝐵𝐴)) + 𝐴))
7270, 71syl6bb 185 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝑦𝐴) = (𝑥 · (𝐵𝐴)) ↔ 𝑦 = ((𝑥 · (𝐵𝐴)) + 𝐴)))
737, 15mulcld 7047 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · 𝐴) ∈ ℂ)
7410, 73, 15subadd23d 7344 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (((𝑥 · 𝐵) − (𝑥 · 𝐴)) + 𝐴) = ((𝑥 · 𝐵) + (𝐴 − (𝑥 · 𝐴))))
757, 9, 15subdid 7411 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · (𝐵𝐴)) = ((𝑥 · 𝐵) − (𝑥 · 𝐴)))
7675oveq1d 5527 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · (𝐵𝐴)) + 𝐴) = (((𝑥 · 𝐵) − (𝑥 · 𝐴)) + 𝐴))
77 1cnd 7043 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 1 ∈ ℂ)
7877, 7, 15subdird 7412 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 − 𝑥) · 𝐴) = ((1 · 𝐴) − (𝑥 · 𝐴)))
7915mulid2d 7045 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (1 · 𝐴) = 𝐴)
8079oveq1d 5527 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 · 𝐴) − (𝑥 · 𝐴)) = (𝐴 − (𝑥 · 𝐴)))
8178, 80eqtrd 2072 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 − 𝑥) · 𝐴) = (𝐴 − (𝑥 · 𝐴)))
8281oveq2d 5528 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)) = ((𝑥 · 𝐵) + (𝐴 − (𝑥 · 𝐴))))
8374, 76, 823eqtr4d 2082 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · (𝐵𝐴)) + 𝐴) = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
8483adantrr 448 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝑥 · (𝐵𝐴)) + 𝐴) = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
8584eqeq2d 2051 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑦 = ((𝑥 · (𝐵𝐴)) + 𝐴) ↔ 𝑦 = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))))
8662, 72, 853bitrd 203 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 = ((𝑦𝐴) / (𝐵𝐴)) ↔ 𝑦 = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))))
871, 19, 55, 86f1ocnv2d 5704 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wcel 1393   class class class wbr 3764  cmpt 3818  ccnv 4344  1-1-ontowf1o 4901  (class class class)co 5512  cc 6887  cr 6888  0cc0 6889  1c1 6890   + caddc 6892   · cmul 6894   < clt 7060  cle 7061  cmin 7182   # cap 7572   / cdiv 7651  +crp 8583  [,]cicc 8760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-rp 8584  df-icc 8764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator