Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1re | GIF version |
Description: 1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.) |
Ref | Expression |
---|---|
1re | ⊢ 1 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1re 6978 | 1 ⊢ 1 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1393 ℝcr 6888 1c1 6890 |
This theorem was proved from axioms: ax-1re 6978 |
This theorem is referenced by: 0re 7027 1red 7042 0lt1 7141 peano2re 7149 peano2rem 7278 0reALT 7308 0le1 7476 1le1 7563 inelr 7575 1ap0 7581 eqneg 7708 ltp1 7810 ltm1 7812 recgt0 7816 mulgt1 7829 ltmulgt11 7830 lemulge11 7832 reclt1 7862 recgt1 7863 recgt1i 7864 recp1lt1 7865 recreclt 7866 cju 7913 peano5nni 7917 nnssre 7918 1nn 7925 nnge1 7937 nnle1eq1 7938 nngt0 7939 nnnlt1 7940 nn1gt1 7947 nngt1ne1 7948 nnrecre 7950 nnrecgt0 7951 nnsub 7952 2re 7985 3re 7989 4re 7992 5re 7994 6re 7996 7re 7998 8re 8000 9re 8002 10re 8004 0le2 8006 2pos 8007 3pos 8010 4pos 8013 5pos 8016 6pos 8017 7pos 8018 8pos 8019 9pos 8020 10pos 8021 neg1rr 8023 neg1lt0 8025 1lt2 8086 1lt3 8088 1lt4 8091 1lt5 8095 1lt6 8100 1lt7 8106 1lt8 8113 1lt9 8121 1lt10 8130 1ne2 8132 1le2 8133 1le3 8136 halflt1 8142 iap0 8148 addltmul 8161 elnnnn0c 8227 nn0ge2m1nn 8242 elnnz1 8268 zltp1le 8298 zleltp1 8299 recnz 8333 gtndiv 8335 eluzp1m1 8496 eluzp1p1 8498 eluz2b2 8540 1rp 8587 divlt1lt 8650 divle1le 8651 0elunit 8854 1elunit 8855 divelunit 8870 lincmb01cmp 8871 iccf1o 8872 unitssre 8873 fzpreddisj 8933 fznatpl1 8938 fztpval 8945 flqbi2 9133 fldiv4p1lem1div2 9147 flqdiv 9163 reexpcl 9272 reexpclzap 9275 expge0 9291 expge1 9292 expgt1 9293 bernneq 9369 bernneq2 9370 expnbnd 9372 expnlbnd 9373 expnlbnd2 9374 cjexp 9493 re1 9497 im1 9498 rei 9499 imi 9500 caucvgre 9580 sqrt1 9644 sqrt2gt1lt2 9647 abs1 9670 caubnd2 9713 mulcn2 9833 ex-fl 9895 |
Copyright terms: Public domain | W3C validator |