Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nncni Structured version   GIF version

Theorem nncni 7705
 Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1 A
Assertion
Ref Expression
nncni A

Proof of Theorem nncni
StepHypRef Expression
1 nnre.1 . . 3 A
21nnrei 7704 . 2 A
32recni 6837 1 A
 Colors of variables: wff set class Syntax hints:   ∈ wcel 1390  ℂcc 6709  ℕcn 7695 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-cnex 6774  ax-resscn 6775  ax-1re 6777  ax-addrcl 6780 This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-v 2553  df-in 2918  df-ss 2925  df-int 3607  df-inn 7696 This theorem is referenced by:  numnncl2  8160  dec10p  8172  dec10  8173
 Copyright terms: Public domain W3C validator