ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2cnd Structured version   GIF version

Theorem 2cnd 7748
Description: 2 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2cnd (φ → 2 ℂ)

Proof of Theorem 2cnd
StepHypRef Expression
1 2cn 7746 . 2 2
21a1i 9 1 (φ → 2 ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4   wcel 1390  cc 6689  2c2 7724
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-resscn 6755  ax-1re 6757  ax-addrcl 6760
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-in 2918  df-ss 2925  df-2 7733
This theorem is referenced by:  cnm2m1cnm3  7933  nneo  8097  zeo2  8100  binom3  8999  zesq  9000
  Copyright terms: Public domain W3C validator