HomeHome Intuitionistic Logic Explorer
Theorem List (p. 74 of 100)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7301-7400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsubcld 7301 Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴𝐵) ∈ ℂ)
 
Theorempncand 7302 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
 
Theorempncan2d 7303 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) − 𝐴) = 𝐵)
 
Theorempncan3d 7304 Subtraction and addition of equals. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 + (𝐵𝐴)) = 𝐵)
 
Theoremnpcand 7305 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((𝐴𝐵) + 𝐵) = 𝐴)
 
Theoremnncand 7306 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 − (𝐴𝐵)) = 𝐵)
 
Theoremnegsubd 7307 Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 + -𝐵) = (𝐴𝐵))
 
Theoremsubnegd 7308 Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵))
 
Theoremsubeq0d 7309 If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → (𝐴𝐵) = 0)       (𝜑𝐴 = 𝐵)
 
Theoremsubne0d 7310 Two unequal numbers have nonzero difference. See also subap0d 7607 which is the same thing for apartness rather than negated equality. (Contributed by Mario Carneiro, 1-Jan-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴𝐵) ≠ 0)
 
Theoremsubeq0ad 7311 The difference of two complex numbers is zero iff they are equal. Deduction form of subeq0 7216. Generalization of subeq0d 7309. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
 
Theoremsubne0ad 7312 If the difference of two complex numbers is nonzero, they are unequal. Converse of subne0d 7310. Contrapositive of subeq0bd 7356. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → (𝐴𝐵) ≠ 0)       (𝜑𝐴𝐵)
 
Theoremneg11d 7313 If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → -𝐴 = -𝐵)       (𝜑𝐴 = 𝐵)
 
Theoremnegdid 7314 Distribution of negative over addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → -(𝐴 + 𝐵) = (-𝐴 + -𝐵))
 
Theoremnegdi2d 7315 Distribution of negative over addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → -(𝐴 + 𝐵) = (-𝐴𝐵))
 
Theoremnegsubdid 7316 Distribution of negative over subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → -(𝐴𝐵) = (-𝐴 + 𝐵))
 
Theoremnegsubdi2d 7317 Distribution of negative over subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → -(𝐴𝐵) = (𝐵𝐴))
 
Theoremneg2subd 7318 Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (-𝐴 − -𝐵) = (𝐵𝐴))
 
Theoremsubaddd 7319 Relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))
 
Theoremsubadd2d 7320 Relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴))
 
Theoremaddsubassd 7321 Associative-type law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵𝐶)))
 
Theoremaddsubd 7322 Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴𝐶) + 𝐵))
 
Theoremsubadd23d 7323 Commutative/associative law for addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴𝐵) + 𝐶) = (𝐴 + (𝐶𝐵)))
 
Theoremaddsub12d 7324 Commutative/associative law for addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴 + (𝐵𝐶)) = (𝐵 + (𝐴𝐶)))
 
Theoremnpncand 7325 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴𝐵) + (𝐵𝐶)) = (𝐴𝐶))
 
Theoremnppcand 7326 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (((𝐴𝐵) + 𝐶) + 𝐵) = (𝐴 + 𝐶))
 
Theoremnppcan2d 7327 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 − (𝐵 + 𝐶)) + 𝐶) = (𝐴𝐵))
 
Theoremnppcan3d 7328 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴𝐵) + (𝐶 + 𝐵)) = (𝐴 + 𝐶))
 
Theoremsubsubd 7329 Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴𝐵) + 𝐶))
 
Theoremsubsub2d 7330 Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴 − (𝐵𝐶)) = (𝐴 + (𝐶𝐵)))
 
Theoremsubsub3d 7331 Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴 + 𝐶) − 𝐵))
 
Theoremsubsub4d 7332 Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴𝐵) − 𝐶) = (𝐴 − (𝐵 + 𝐶)))
 
Theoremsub32d 7333 Swap the second and third terms in a double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴𝐵) − 𝐶) = ((𝐴𝐶) − 𝐵))
 
Theoremnnncand 7334 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 − (𝐵𝐶)) − 𝐶) = (𝐴𝐵))
 
Theoremnnncan1d 7335 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴𝐵) − (𝐴𝐶)) = (𝐶𝐵))
 
Theoremnnncan2d 7336 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴𝐶) − (𝐵𝐶)) = (𝐴𝐵))
 
Theoremnpncan3d 7337 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴𝐵) + (𝐶𝐴)) = (𝐶𝐵))
 
Theorempnpcand 7338 Cancellation law for mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) − (𝐴 + 𝐶)) = (𝐵𝐶))
 
Theorempnpcan2d 7339 Cancellation law for mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐶) − (𝐵 + 𝐶)) = (𝐴𝐵))
 
Theorempnncand 7340 Cancellation law for mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) − (𝐴𝐶)) = (𝐵 + 𝐶))
 
Theoremppncand 7341 Cancellation law for mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) + (𝐶𝐵)) = (𝐴 + 𝐶))
 
Theoremsubcand 7342 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑 → (𝐴𝐵) = (𝐴𝐶))       (𝜑𝐵 = 𝐶)
 
Theoremsubcan2d 7343 Cancellation law for subtraction. (Contributed by Mario Carneiro, 22-Sep-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑 → (𝐴𝐶) = (𝐵𝐶))       (𝜑𝐴 = 𝐵)
 
Theoremsubcanad 7344 Cancellation law for subtraction. Deduction form of subcan 7245. Generalization of subcand 7342. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴𝐵) = (𝐴𝐶) ↔ 𝐵 = 𝐶))
 
Theoremsubneintrd 7345 Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcand 7342. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵𝐶)       (𝜑 → (𝐴𝐵) ≠ (𝐴𝐶))
 
Theoremsubcan2ad 7346 Cancellation law for subtraction. Deduction form of subcan2 7215. Generalization of subcan2d 7343. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴𝐶) = (𝐵𝐶) ↔ 𝐴 = 𝐵))
 
Theoremsubneintr2d 7347 Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcan2d 7343. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴𝐶) ≠ (𝐵𝐶))
 
Theoremaddsub4d 7348 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴𝐶) + (𝐵𝐷)))
 
Theoremsubadd4d 7349 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ((𝐴𝐵) − (𝐶𝐷)) = ((𝐴 + 𝐷) − (𝐵 + 𝐶)))
 
Theoremsub4d 7350 Rearrangement of 4 terms in a subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ((𝐴𝐵) − (𝐶𝐷)) = ((𝐴𝐶) − (𝐵𝐷)))
 
Theorem2addsubd 7351 Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → (((𝐴 + 𝐵) + 𝐶) − 𝐷) = (((𝐴 + 𝐶) − 𝐷) + 𝐵))
 
Theoremaddsubeq4d 7352 Relation between sums and differences. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐶𝐴) = (𝐵𝐷)))
 
Theoremsubeqrev 7353 Reverse the order of subtraction in an equality. (Contributed by Scott Fenton, 8-Jul-2013.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴𝐵) = (𝐶𝐷) ↔ (𝐵𝐴) = (𝐷𝐶)))
 
Theorempncan1 7354 Cancellation law for addition and subtraction with 1. (Contributed by Alexander van der Vekens, 3-Oct-2018.)
(𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴)
 
Theoremnpcan1 7355 Cancellation law for subtraction and addition with 1. (Contributed by Alexander van der Vekens, 5-Oct-2018.)
(𝐴 ∈ ℂ → ((𝐴 − 1) + 1) = 𝐴)
 
Theoremsubeq0bd 7356 If two complex numbers are equal, their difference is zero. Consequence of subeq0ad 7311. Converse of subeq0d 7309. Contrapositive of subne0ad 7312. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐵) = 0)
 
Theoremrenegcld 7357 Closure law for negative of reals. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → -𝐴 ∈ ℝ)
 
Theoremresubcld 7358 Closure law for subtraction of reals. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴𝐵) ∈ ℝ)
 
3.3.3  Multiplication
 
Theoremkcnktkm1cn 7359 k times k minus 1 is a complex number if k is a complex number. (Contributed by Alexander van der Vekens, 11-Mar-2018.)
(𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ)
 
Theoremmuladd 7360 Product of two sums. (Contributed by NM, 14-Jan-2006.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
 
Theoremsubdi 7361 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 18-Nov-2004.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶)))
 
Theoremsubdir 7362 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 30-Dec-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
 
Theoremmul02 7363 Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 10-Aug-1999.)
(𝐴 ∈ ℂ → (0 · 𝐴) = 0)
 
Theoremmul02lem2 7364 Zero times a real is zero. Although we prove it as a corollary of mul02 7363, the name is for consistency with the Metamath Proof Explorer which proves it before mul02 7363. (Contributed by Scott Fenton, 3-Jan-2013.)
(𝐴 ∈ ℝ → (0 · 𝐴) = 0)
 
Theoremmul01 7365 Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 15-May-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
(𝐴 ∈ ℂ → (𝐴 · 0) = 0)
 
Theoremmul02i 7366 Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ       (0 · 𝐴) = 0
 
Theoremmul01i 7367 Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
𝐴 ∈ ℂ       (𝐴 · 0) = 0
 
Theoremmul02d 7368 Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (0 · 𝐴) = 0)
 
Theoremmul01d 7369 Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 · 0) = 0)
 
Theoremine0 7370 The imaginary unit i is not zero. (Contributed by NM, 6-May-1999.)
i ≠ 0
 
Theoremmulneg1 7371 Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 14-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵))
 
Theoremmulneg2 7372 The product with a negative is the negative of the product. (Contributed by NM, 30-Jul-2004.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
 
Theoremmulneg12 7373 Swap the negative sign in a product. (Contributed by NM, 30-Jul-2004.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = (𝐴 · -𝐵))
 
Theoremmul2neg 7374 Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 30-Jul-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
 
Theoremsubmul2 7375 Convert a subtraction to addition using multiplication by a negative. (Contributed by NM, 2-Feb-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 · 𝐶)) = (𝐴 + (𝐵 · -𝐶)))
 
Theoremmulm1 7376 Product with minus one is negative. (Contributed by NM, 16-Nov-1999.)
(𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
 
Theoremmulsub 7377 Product of two differences. (Contributed by NM, 14-Jan-2006.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴𝐵) · (𝐶𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
 
Theoremmulsub2 7378 Swap the order of subtraction in a multiplication. (Contributed by Scott Fenton, 24-Jun-2013.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴𝐵) · (𝐶𝐷)) = ((𝐵𝐴) · (𝐷𝐶)))
 
Theoremmulm1i 7379 Product with minus one is negative. (Contributed by NM, 31-Jul-1999.)
𝐴 ∈ ℂ       (-1 · 𝐴) = -𝐴
 
Theoremmulneg1i 7380 Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 10-Feb-1995.) (Revised by Mario Carneiro, 27-May-2016.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (-𝐴 · 𝐵) = -(𝐴 · 𝐵)
 
Theoremmulneg2i 7381 Product with negative is negative of product. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 27-May-2016.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐴 · -𝐵) = -(𝐴 · 𝐵)
 
Theoremmul2negi 7382 Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 14-Feb-1995.) (Revised by Mario Carneiro, 27-May-2016.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (-𝐴 · -𝐵) = (𝐴 · 𝐵)
 
Theoremsubdii 7383 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 26-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (𝐴 · (𝐵𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶))
 
Theoremsubdiri 7384 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 8-May-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))
 
Theoremmuladdi 7385 Product of two sums. (Contributed by NM, 17-May-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ       ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵)))
 
Theoremmulm1d 7386 Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (-1 · 𝐴) = -𝐴)
 
Theoremmulneg1d 7387 Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵))
 
Theoremmulneg2d 7388 Product with negative is negative of product. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
 
Theoremmul2negd 7389 Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
 
Theoremsubdid 7390 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴 · (𝐵𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶)))
 
Theoremsubdird 7391 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
 
Theoremmuladdd 7392 Product of two sums. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
 
Theoremmulsubd 7393 Product of two differences. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ((𝐴𝐵) · (𝐶𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
 
Theoremmulsubfacd 7394 Multiplication followed by the subtraction of a factor. (Contributed by Alexander van der Vekens, 28-Aug-2018.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((𝐴 · 𝐵) − 𝐵) = ((𝐴 − 1) · 𝐵))
 
3.3.4  Ordering on reals (cont.)
 
Theoremltadd2 7395 Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
 
Theoremltadd2i 7396 Addition to both sides of 'less than'. (Contributed by NM, 21-Jan-1997.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))
 
Theoremltadd2d 7397 Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
 
Theoremltadd2dd 7398 Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵))
 
Theoremltletrd 7399 Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑𝐵𝐶)       (𝜑𝐴 < 𝐶)
 
Theoremgt0ne0 7400 Positive implies nonzero. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-9995
  Copyright terms: Public domain < Previous  Next >