![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subeqrev | GIF version |
Description: Reverse the order of subtraction in an equality. (Contributed by Scott Fenton, 8-Jul-2013.) |
Ref | Expression |
---|---|
subeqrev | ⊢ (((A ∈ ℂ ∧ B ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((A − B) = (𝐶 − 𝐷) ↔ (B − A) = (𝐷 − 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl 7007 | . . 3 ⊢ ((A ∈ ℂ ∧ B ∈ ℂ) → (A − B) ∈ ℂ) | |
2 | subcl 7007 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 − 𝐷) ∈ ℂ) | |
3 | neg11 7058 | . . 3 ⊢ (((A − B) ∈ ℂ ∧ (𝐶 − 𝐷) ∈ ℂ) → (-(A − B) = -(𝐶 − 𝐷) ↔ (A − B) = (𝐶 − 𝐷))) | |
4 | 1, 2, 3 | syl2an 273 | . 2 ⊢ (((A ∈ ℂ ∧ B ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (-(A − B) = -(𝐶 − 𝐷) ↔ (A − B) = (𝐶 − 𝐷))) |
5 | negsubdi2 7066 | . . 3 ⊢ ((A ∈ ℂ ∧ B ∈ ℂ) → -(A − B) = (B − A)) | |
6 | negsubdi2 7066 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → -(𝐶 − 𝐷) = (𝐷 − 𝐶)) | |
7 | 5, 6 | eqeqan12d 2052 | . 2 ⊢ (((A ∈ ℂ ∧ B ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (-(A − B) = -(𝐶 − 𝐷) ↔ (B − A) = (𝐷 − 𝐶))) |
8 | 4, 7 | bitr3d 179 | 1 ⊢ (((A ∈ ℂ ∧ B ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((A − B) = (𝐶 − 𝐷) ↔ (B − A) = (𝐷 − 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 = wceq 1242 ∈ wcel 1390 (class class class)co 5455 ℂcc 6709 − cmin 6979 -cneg 6980 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-pow 3918 ax-pr 3935 ax-setind 4220 ax-resscn 6775 ax-1cn 6776 ax-icn 6778 ax-addcl 6779 ax-addrcl 6780 ax-mulcl 6781 ax-addcom 6783 ax-addass 6785 ax-distr 6787 ax-i2m1 6788 ax-0id 6791 ax-rnegex 6792 ax-cnre 6794 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-fal 1248 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ne 2203 df-ral 2305 df-rex 2306 df-reu 2307 df-rab 2309 df-v 2553 df-sbc 2759 df-dif 2914 df-un 2916 df-in 2918 df-ss 2925 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-uni 3572 df-br 3756 df-opab 3810 df-id 4021 df-xp 4294 df-rel 4295 df-cnv 4296 df-co 4297 df-dm 4298 df-iota 4810 df-fun 4847 df-fv 4853 df-riota 5411 df-ov 5458 df-oprab 5459 df-mpt2 5460 df-sub 6981 df-neg 6982 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |