Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mprgbir | GIF version |
Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
Ref | Expression |
---|---|
mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
Ref | Expression |
---|---|
mprgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
2 | 1 | rgen 2374 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | mpbir 134 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 ∈ wcel 1393 ∀wral 2306 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-gen 1338 |
This theorem depends on definitions: df-bi 110 df-ral 2311 |
This theorem is referenced by: ss2rabi 3022 rabnc 3250 ssintub 3633 tron 4119 djussxp 4481 dmiin 4580 dfco2 4820 coiun 4830 tfrlem6 5932 oacl 6040 peano1nnnn 6928 renfdisj 7079 1nn 7925 ioomax 8817 iccmax 8818 bj-omtrans2 10082 |
Copyright terms: Public domain | W3C validator |