ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralimia Structured version   GIF version

Theorem ralimia 2376
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.)
Hypothesis
Ref Expression
ralimia.1 (x A → (φψ))
Assertion
Ref Expression
ralimia (x A φx A ψ)

Proof of Theorem ralimia
StepHypRef Expression
1 ralimia.1 . . 3 (x A → (φψ))
21a2i 11 . 2 ((x Aφ) → (x Aψ))
32ralimi2 2375 1 (x A φx A ψ)
Colors of variables: wff set class
Syntax hints:  wi 4   wcel 1390  wral 2300
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335
This theorem depends on definitions:  df-bi 110  df-ral 2305
This theorem is referenced by:  ralimiaa  2377  ralimi  2378  r19.12  2416  rr19.3v  2676  rr19.28v  2677  ffvresb  5271  f1mpt  5353  peano5nni  7698  peano2nn  7707
  Copyright terms: Public domain W3C validator