ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r3al Structured version   GIF version

Theorem r3al 2360
Description: Triple restricted universal quantification. (Contributed by NM, 19-Nov-1995.)
Assertion
Ref Expression
r3al (x A y B z 𝐶 φxyz((x A y B z 𝐶) → φ))
Distinct variable groups:   x,y,z   y,A,z   z,B
Allowed substitution hints:   φ(x,y,z)   A(x)   B(x,y)   𝐶(x,y,z)

Proof of Theorem r3al
StepHypRef Expression
1 df-ral 2305 . 2 (x A yz((y B z 𝐶) → φ) ↔ x(x Ayz((y B z 𝐶) → φ)))
2 r2al 2337 . . 3 (y B z 𝐶 φyz((y B z 𝐶) → φ))
32ralbii 2324 . 2 (x A y B z 𝐶 φx A yz((y B z 𝐶) → φ))
4 3anass 888 . . . . . . . . 9 ((x A y B z 𝐶) ↔ (x A (y B z 𝐶)))
54imbi1i 227 . . . . . . . 8 (((x A y B z 𝐶) → φ) ↔ ((x A (y B z 𝐶)) → φ))
6 impexp 250 . . . . . . . 8 (((x A (y B z 𝐶)) → φ) ↔ (x A → ((y B z 𝐶) → φ)))
75, 6bitri 173 . . . . . . 7 (((x A y B z 𝐶) → φ) ↔ (x A → ((y B z 𝐶) → φ)))
87albii 1356 . . . . . 6 (z((x A y B z 𝐶) → φ) ↔ z(x A → ((y B z 𝐶) → φ)))
9 19.21v 1750 . . . . . 6 (z(x A → ((y B z 𝐶) → φ)) ↔ (x Az((y B z 𝐶) → φ)))
108, 9bitri 173 . . . . 5 (z((x A y B z 𝐶) → φ) ↔ (x Az((y B z 𝐶) → φ)))
1110albii 1356 . . . 4 (yz((x A y B z 𝐶) → φ) ↔ y(x Az((y B z 𝐶) → φ)))
12 19.21v 1750 . . . 4 (y(x Az((y B z 𝐶) → φ)) ↔ (x Ayz((y B z 𝐶) → φ)))
1311, 12bitri 173 . . 3 (yz((x A y B z 𝐶) → φ) ↔ (x Ayz((y B z 𝐶) → φ)))
1413albii 1356 . 2 (xyz((x A y B z 𝐶) → φ) ↔ x(x Ayz((y B z 𝐶) → φ)))
151, 3, 143bitr4i 201 1 (x A y B z 𝐶 φxyz((x A y B z 𝐶) → φ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98   w3a 884  wal 1240   wcel 1390  wral 2300
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305
This theorem is referenced by:  pocl  4030  soss  4041
  Copyright terms: Public domain W3C validator