![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2ralbidva | GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction rule). (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
2ralbidva.1 | ⊢ ((φ ∧ (x ∈ A ∧ y ∈ B)) → (ψ ↔ χ)) |
Ref | Expression |
---|---|
2ralbidva | ⊢ (φ → (∀x ∈ A ∀y ∈ B ψ ↔ ∀x ∈ A ∀y ∈ B χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1418 | . 2 ⊢ Ⅎxφ | |
2 | nfv 1418 | . 2 ⊢ Ⅎyφ | |
3 | 2ralbidva.1 | . 2 ⊢ ((φ ∧ (x ∈ A ∧ y ∈ B)) → (ψ ↔ χ)) | |
4 | 1, 2, 3 | 2ralbida 2339 | 1 ⊢ (φ → (∀x ∈ A ∀y ∈ B ψ ↔ ∀x ∈ A ∀y ∈ B χ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 ∈ wcel 1390 ∀wral 2300 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-gen 1335 ax-4 1397 ax-17 1416 |
This theorem depends on definitions: df-bi 110 df-nf 1347 df-ral 2305 |
This theorem is referenced by: soinxp 4353 isotr 5399 |
Copyright terms: Public domain | W3C validator |