Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  psseq12d GIF version

Theorem psseq12d 3038
 Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
Hypotheses
Ref Expression
psseq1d.1 (𝜑𝐴 = 𝐵)
psseq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
psseq12d (𝜑 → (𝐴𝐶𝐵𝐷))

Proof of Theorem psseq12d
StepHypRef Expression
1 psseq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21psseq1d 3036 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
3 psseq12d.2 . . 3 (𝜑𝐶 = 𝐷)
43psseq2d 3037 . 2 (𝜑 → (𝐵𝐶𝐵𝐷))
52, 4bitrd 177 1 (𝜑 → (𝐴𝐶𝐵𝐷))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98   = wceq 1243   ⊊ wpss 2918 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-ne 2206  df-in 2924  df-ss 2931  df-pss 2933 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator