Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  equncom GIF version

Theorem equncom 3088
 Description: If a class equals the union of two other classes, then it equals the union of those two classes commuted. (Contributed by Alan Sare, 18-Feb-2012.)
Assertion
Ref Expression
equncom (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))

Proof of Theorem equncom
StepHypRef Expression
1 uncom 3087 . 2 (𝐵𝐶) = (𝐶𝐵)
21eqeq2i 2050 1 (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))
 Colors of variables: wff set class Syntax hints:   ↔ wb 98   = wceq 1243   ∪ cun 2915 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922 This theorem is referenced by:  equncomi  3089
 Copyright terms: Public domain W3C validator