![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reximi | GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
Ref | Expression |
---|---|
reximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
reximi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | reximia 2414 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1393 ∃wrex 2307 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-ral 2311 df-rex 2312 |
This theorem is referenced by: r19.29d2r 2455 r19.35-1 2460 r19.40 2464 reu3 2731 ssiun 3699 iinss 3708 elunirn 5405 nnawordex 6101 iinerm 6178 erovlem 6198 genprndl 6619 genprndu 6620 appdiv0nq 6662 ltexprlemm 6698 recexsrlem 6859 rereceu 6963 recexre 7569 climi2 9809 climi0 9810 climcaucn 9870 bj-findis 10104 |
Copyright terms: Public domain | W3C validator |