![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimd2 | GIF version |
Description: Version of rexlimd 2430 with deduction version of second hypothesis. (Contributed by NM, 21-Jul-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
rexlimd2.1 | ⊢ Ⅎ𝑥𝜑 |
rexlimd2.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
rexlimd2.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
rexlimd2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimd2.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rexlimd2.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
3 | 1, 2 | ralrimi 2390 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
4 | rexlimd2.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
5 | r19.23t 2423 | . . 3 ⊢ (Ⅎ𝑥𝜒 → (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜓 → 𝜒))) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜓 → 𝜒))) |
7 | 3, 6 | mpbid 135 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 Ⅎwnf 1349 ∈ wcel 1393 ∀wral 2306 ∃wrex 2307 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-ral 2311 df-rex 2312 |
This theorem is referenced by: sbcrext 2835 |
Copyright terms: Public domain | W3C validator |