ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvelimab GIF version

Theorem fvelimab 5229
Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.)
Assertion
Ref Expression
fvelimab ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fvelimab
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2566 . . . 4 (𝐶 ∈ (𝐹𝐵) → 𝐶 ∈ V)
21anim2i 324 . . 3 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ (𝐹𝐵)) → ((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V))
3 ssel2 2940 . . . . . . . 8 ((𝐵𝐴𝑢𝐵) → 𝑢𝐴)
4 funfvex 5192 . . . . . . . . 9 ((Fun 𝐹𝑢 ∈ dom 𝐹) → (𝐹𝑢) ∈ V)
54funfni 4999 . . . . . . . 8 ((𝐹 Fn 𝐴𝑢𝐴) → (𝐹𝑢) ∈ V)
63, 5sylan2 270 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ (𝐵𝐴𝑢𝐵)) → (𝐹𝑢) ∈ V)
76anassrs 380 . . . . . 6 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑢𝐵) → (𝐹𝑢) ∈ V)
8 eleq1 2100 . . . . . 6 ((𝐹𝑢) = 𝐶 → ((𝐹𝑢) ∈ V ↔ 𝐶 ∈ V))
97, 8syl5ibcom 144 . . . . 5 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑢𝐵) → ((𝐹𝑢) = 𝐶𝐶 ∈ V))
109rexlimdva 2433 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑢𝐵 (𝐹𝑢) = 𝐶𝐶 ∈ V))
1110imdistani 419 . . 3 (((𝐹 Fn 𝐴𝐵𝐴) ∧ ∃𝑢𝐵 (𝐹𝑢) = 𝐶) → ((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V))
12 eleq1 2100 . . . . . . 7 (𝑣 = 𝐶 → (𝑣 ∈ (𝐹𝐵) ↔ 𝐶 ∈ (𝐹𝐵)))
13 eqeq2 2049 . . . . . . . 8 (𝑣 = 𝐶 → ((𝐹𝑢) = 𝑣 ↔ (𝐹𝑢) = 𝐶))
1413rexbidv 2327 . . . . . . 7 (𝑣 = 𝐶 → (∃𝑢𝐵 (𝐹𝑢) = 𝑣 ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶))
1512, 14bibi12d 224 . . . . . 6 (𝑣 = 𝐶 → ((𝑣 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝑣) ↔ (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶)))
1615imbi2d 219 . . . . 5 (𝑣 = 𝐶 → (((𝐹 Fn 𝐴𝐵𝐴) → (𝑣 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝑣)) ↔ ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶))))
17 fnfun 4996 . . . . . . . 8 (𝐹 Fn 𝐴 → Fun 𝐹)
1817adantr 261 . . . . . . 7 ((𝐹 Fn 𝐴𝐵𝐴) → Fun 𝐹)
19 fndm 4998 . . . . . . . . 9 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
2019sseq2d 2973 . . . . . . . 8 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
2120biimpar 281 . . . . . . 7 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ⊆ dom 𝐹)
22 dfimafn 5222 . . . . . . 7 ((Fun 𝐹𝐵 ⊆ dom 𝐹) → (𝐹𝐵) = {𝑣 ∣ ∃𝑢𝐵 (𝐹𝑢) = 𝑣})
2318, 21, 22syl2anc 391 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) = {𝑣 ∣ ∃𝑢𝐵 (𝐹𝑢) = 𝑣})
2423abeq2d 2150 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑣 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝑣))
2516, 24vtoclg 2613 . . . 4 (𝐶 ∈ V → ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶)))
2625impcom 116 . . 3 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶))
272, 11, 26pm5.21nd 825 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶))
28 fveq2 5178 . . . 4 (𝑢 = 𝑥 → (𝐹𝑢) = (𝐹𝑥))
2928eqeq1d 2048 . . 3 (𝑢 = 𝑥 → ((𝐹𝑢) = 𝐶 ↔ (𝐹𝑥) = 𝐶))
3029cbvrexv 2534 . 2 (∃𝑢𝐵 (𝐹𝑢) = 𝐶 ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶)
3127, 30syl6bb 185 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wcel 1393  {cab 2026  wrex 2307  Vcvv 2557  wss 2917  dom cdm 4345  cima 4348  Fun wfun 4896   Fn wfn 4897  cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910
This theorem is referenced by:  ssimaex  5234  rexima  5394  ralima  5395  f1elima  5412  ovelimab  5651
  Copyright terms: Public domain W3C validator