Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemcl Structured version   GIF version

Theorem caucvgprlemcl 6647
 Description: Lemma for caucvgpr 6653. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f (φ𝐹:NQ)
caucvgpr.cau (φ𝑛 N 𝑘 N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
caucvgpr.bnd (φ𝑗 N A <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u}⟩
Assertion
Ref Expression
caucvgprlemcl (φ𝐿 P)
Distinct variable groups:   A,𝑗   𝑗,𝐹,𝑙   u,𝐹,𝑗   𝑛,𝐹,𝑘   𝑗,𝑘,𝐿   𝑘,𝑛
Allowed substitution hints:   φ(u,𝑗,𝑘,𝑛,𝑙)   A(u,𝑘,𝑛,𝑙)   𝐿(u,𝑛,𝑙)

Proof of Theorem caucvgprlemcl
Dummy variables 𝑠 𝑎 𝑐 𝑑 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgpr.f . . . 4 (φ𝐹:NQ)
2 caucvgpr.cau . . . 4 (φ𝑛 N 𝑘 N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
3 caucvgpr.bnd . . . . 5 (φ𝑗 N A <Q (𝐹𝑗))
4 fveq2 5121 . . . . . . 7 (𝑗 = 𝑎 → (𝐹𝑗) = (𝐹𝑎))
54breq2d 3767 . . . . . 6 (𝑗 = 𝑎 → (A <Q (𝐹𝑗) ↔ A <Q (𝐹𝑎)))
65cbvralv 2527 . . . . 5 (𝑗 N A <Q (𝐹𝑗) ↔ 𝑎 N A <Q (𝐹𝑎))
73, 6sylib 127 . . . 4 (φ𝑎 N A <Q (𝐹𝑎))
8 caucvgpr.lim . . . . 5 𝐿 = ⟨{𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u}⟩
9 opeq1 3540 . . . . . . . . . . . . 13 (𝑗 = 𝑎 → ⟨𝑗, 1𝑜⟩ = ⟨𝑎, 1𝑜⟩)
109eceq1d 6078 . . . . . . . . . . . 12 (𝑗 = 𝑎 → [⟨𝑗, 1𝑜⟩] ~Q = [⟨𝑎, 1𝑜⟩] ~Q )
1110fveq2d 5125 . . . . . . . . . . 11 (𝑗 = 𝑎 → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))
1211oveq2d 5471 . . . . . . . . . 10 (𝑗 = 𝑎 → (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )))
1312, 4breq12d 3768 . . . . . . . . 9 (𝑗 = 𝑎 → ((𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q (𝐹𝑎)))
1413cbvrexv 2528 . . . . . . . 8 (𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ 𝑎 N (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q (𝐹𝑎))
1514a1i 9 . . . . . . 7 (𝑙 Q → (𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ 𝑎 N (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q (𝐹𝑎)))
1615rabbiia 2541 . . . . . 6 {𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)} = {𝑙 Q𝑎 N (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q (𝐹𝑎)}
174, 11oveq12d 5473 . . . . . . . . . 10 (𝑗 = 𝑎 → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )))
1817breq1d 3765 . . . . . . . . 9 (𝑗 = 𝑎 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u ↔ ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q u))
1918cbvrexv 2528 . . . . . . . 8 (𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u𝑎 N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q u)
2019a1i 9 . . . . . . 7 (u Q → (𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u𝑎 N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q u))
2120rabbiia 2541 . . . . . 6 {u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u} = {u Q𝑎 N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q u}
2216, 21opeq12i 3545 . . . . 5 ⟨{𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u}⟩ = ⟨{𝑙 Q𝑎 N (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q (𝐹𝑎)}, {u Q𝑎 N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q u}⟩
238, 22eqtri 2057 . . . 4 𝐿 = ⟨{𝑙 Q𝑎 N (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q (𝐹𝑎)}, {u Q𝑎 N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q u}⟩
241, 2, 7, 23caucvgprlemm 6639 . . 3 (φ → (𝑠 Q 𝑠 (1st𝐿) 𝑟 Q 𝑟 (2nd𝐿)))
25 ssrab2 3019 . . . . . 6 {𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)} ⊆ Q
26 nqex 6347 . . . . . . 7 Q V
2726elpw2 3902 . . . . . 6 ({𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)} 𝒫 Q ↔ {𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)} ⊆ Q)
2825, 27mpbir 134 . . . . 5 {𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)} 𝒫 Q
29 ssrab2 3019 . . . . . 6 {u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u} ⊆ Q
3026elpw2 3902 . . . . . 6 ({u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u} 𝒫 Q ↔ {u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u} ⊆ Q)
3129, 30mpbir 134 . . . . 5 {u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u} 𝒫 Q
32 opelxpi 4319 . . . . 5 (({𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)} 𝒫 Q {u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u} 𝒫 Q) → ⟨{𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u}⟩ (𝒫 Q × 𝒫 Q))
3328, 31, 32mp2an 402 . . . 4 ⟨{𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u}⟩ (𝒫 Q × 𝒫 Q)
348, 33eqeltri 2107 . . 3 𝐿 (𝒫 Q × 𝒫 Q)
3524, 34jctil 295 . 2 (φ → (𝐿 (𝒫 Q × 𝒫 Q) (𝑠 Q 𝑠 (1st𝐿) 𝑟 Q 𝑟 (2nd𝐿))))
361, 2, 7, 23caucvgprlemrnd 6644 . . 3 (φ → (𝑠 Q (𝑠 (1st𝐿) ↔ 𝑟 Q (𝑠 <Q 𝑟 𝑟 (1st𝐿))) 𝑟 Q (𝑟 (2nd𝐿) ↔ 𝑠 Q (𝑠 <Q 𝑟 𝑠 (2nd𝐿)))))
37 breq1 3758 . . . . . . 7 (𝑛 = 𝑐 → (𝑛 <N 𝑘𝑐 <N 𝑘))
38 fveq2 5121 . . . . . . . . 9 (𝑛 = 𝑐 → (𝐹𝑛) = (𝐹𝑐))
39 opeq1 3540 . . . . . . . . . . . 12 (𝑛 = 𝑐 → ⟨𝑛, 1𝑜⟩ = ⟨𝑐, 1𝑜⟩)
4039eceq1d 6078 . . . . . . . . . . 11 (𝑛 = 𝑐 → [⟨𝑛, 1𝑜⟩] ~Q = [⟨𝑐, 1𝑜⟩] ~Q )
4140fveq2d 5125 . . . . . . . . . 10 (𝑛 = 𝑐 → (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))
4241oveq2d 5471 . . . . . . . . 9 (𝑛 = 𝑐 → ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) = ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )))
4338, 42breq12d 3768 . . . . . . . 8 (𝑛 = 𝑐 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ↔ (𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))))
4438, 41oveq12d 5473 . . . . . . . . 9 (𝑛 = 𝑐 → ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) = ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )))
4544breq2d 3767 . . . . . . . 8 (𝑛 = 𝑐 → ((𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ↔ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))))
4643, 45anbi12d 442 . . . . . . 7 (𝑛 = 𝑐 → (((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ))) ↔ ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )))))
4737, 46imbi12d 223 . . . . . 6 (𝑛 = 𝑐 → ((𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))) ↔ (𝑐 <N 𝑘 → ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))))))
48 breq2 3759 . . . . . . 7 (𝑘 = 𝑑 → (𝑐 <N 𝑘𝑐 <N 𝑑))
49 fveq2 5121 . . . . . . . . . 10 (𝑘 = 𝑑 → (𝐹𝑘) = (𝐹𝑑))
5049oveq1d 5470 . . . . . . . . 9 (𝑘 = 𝑑 → ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) = ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )))
5150breq2d 3767 . . . . . . . 8 (𝑘 = 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) ↔ (𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))))
5249breq1d 3765 . . . . . . . 8 (𝑘 = 𝑑 → ((𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) ↔ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))))
5351, 52anbi12d 442 . . . . . . 7 (𝑘 = 𝑑 → (((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))) ↔ ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )))))
5448, 53imbi12d 223 . . . . . 6 (𝑘 = 𝑑 → ((𝑐 <N 𝑘 → ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )))) ↔ (𝑐 <N 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))))))
5547, 54cbvral2v 2535 . . . . 5 (𝑛 N 𝑘 N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))) ↔ 𝑐 N 𝑑 N (𝑐 <N 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )))))
562, 55sylib 127 . . . 4 (φ𝑐 N 𝑑 N (𝑐 <N 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )))))
571, 56, 7, 23caucvgprlemdisj 6645 . . 3 (φ𝑠 Q ¬ (𝑠 (1st𝐿) 𝑠 (2nd𝐿)))
581, 2, 7, 23caucvgprlemloc 6646 . . 3 (φ𝑠 Q 𝑟 Q (𝑠 <Q 𝑟 → (𝑠 (1st𝐿) 𝑟 (2nd𝐿))))
5936, 57, 583jca 1083 . 2 (φ → ((𝑠 Q (𝑠 (1st𝐿) ↔ 𝑟 Q (𝑠 <Q 𝑟 𝑟 (1st𝐿))) 𝑟 Q (𝑟 (2nd𝐿) ↔ 𝑠 Q (𝑠 <Q 𝑟 𝑠 (2nd𝐿)))) 𝑠 Q ¬ (𝑠 (1st𝐿) 𝑠 (2nd𝐿)) 𝑠 Q 𝑟 Q (𝑠 <Q 𝑟 → (𝑠 (1st𝐿) 𝑟 (2nd𝐿)))))
60 elnp1st2nd 6459 . 2 (𝐿 P ↔ ((𝐿 (𝒫 Q × 𝒫 Q) (𝑠 Q 𝑠 (1st𝐿) 𝑟 Q 𝑟 (2nd𝐿))) ((𝑠 Q (𝑠 (1st𝐿) ↔ 𝑟 Q (𝑠 <Q 𝑟 𝑟 (1st𝐿))) 𝑟 Q (𝑟 (2nd𝐿) ↔ 𝑠 Q (𝑠 <Q 𝑟 𝑠 (2nd𝐿)))) 𝑠 Q ¬ (𝑠 (1st𝐿) 𝑠 (2nd𝐿)) 𝑠 Q 𝑟 Q (𝑠 <Q 𝑟 → (𝑠 (1st𝐿) 𝑟 (2nd𝐿))))))
6135, 59, 60sylanbrc 394 1 (φ𝐿 P)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 97   ↔ wb 98   ∨ wo 628   ∧ w3a 884   = wceq 1242   ∈ wcel 1390  ∀wral 2300  ∃wrex 2301  {crab 2304   ⊆ wss 2911  𝒫 cpw 3351  ⟨cop 3370   class class class wbr 3755   × cxp 4286  ⟶wf 4841  ‘cfv 4845  (class class class)co 5455  1st c1st 5707  2nd c2nd 5708  1𝑜c1o 5933  [cec 6040  Ncnpi 6256
 Copyright terms: Public domain W3C validator