ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemcl GIF version

Theorem caucvgprlemcl 6774
Description: Lemma for caucvgpr 6780. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemcl (𝜑𝐿P)
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑙   𝑢,𝐹,𝑗   𝑛,𝐹,𝑘   𝑗,𝑘,𝐿   𝑘,𝑛
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝐿(𝑢,𝑛,𝑙)

Proof of Theorem caucvgprlemcl
Dummy variables 𝑠 𝑎 𝑐 𝑑 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgpr.f . . . 4 (𝜑𝐹:NQ)
2 caucvgpr.cau . . . 4 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
3 caucvgpr.bnd . . . . 5 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
4 fveq2 5178 . . . . . . 7 (𝑗 = 𝑎 → (𝐹𝑗) = (𝐹𝑎))
54breq2d 3776 . . . . . 6 (𝑗 = 𝑎 → (𝐴 <Q (𝐹𝑗) ↔ 𝐴 <Q (𝐹𝑎)))
65cbvralv 2533 . . . . 5 (∀𝑗N 𝐴 <Q (𝐹𝑗) ↔ ∀𝑎N 𝐴 <Q (𝐹𝑎))
73, 6sylib 127 . . . 4 (𝜑 → ∀𝑎N 𝐴 <Q (𝐹𝑎))
8 caucvgpr.lim . . . . 5 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
9 opeq1 3549 . . . . . . . . . . . . 13 (𝑗 = 𝑎 → ⟨𝑗, 1𝑜⟩ = ⟨𝑎, 1𝑜⟩)
109eceq1d 6142 . . . . . . . . . . . 12 (𝑗 = 𝑎 → [⟨𝑗, 1𝑜⟩] ~Q = [⟨𝑎, 1𝑜⟩] ~Q )
1110fveq2d 5182 . . . . . . . . . . 11 (𝑗 = 𝑎 → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))
1211oveq2d 5528 . . . . . . . . . 10 (𝑗 = 𝑎 → (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )))
1312, 4breq12d 3777 . . . . . . . . 9 (𝑗 = 𝑎 → ((𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q (𝐹𝑎)))
1413cbvrexv 2534 . . . . . . . 8 (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q (𝐹𝑎))
1514a1i 9 . . . . . . 7 (𝑙Q → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q (𝐹𝑎)))
1615rabbiia 2547 . . . . . 6 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)} = {𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q (𝐹𝑎)}
174, 11oveq12d 5530 . . . . . . . . . 10 (𝑗 = 𝑎 → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )))
1817breq1d 3774 . . . . . . . . 9 (𝑗 = 𝑎 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢))
1918cbvrexv 2534 . . . . . . . 8 (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢 ↔ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢)
2019a1i 9 . . . . . . 7 (𝑢Q → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢 ↔ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢))
2120rabbiia 2547 . . . . . 6 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢} = {𝑢Q ∣ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}
2216, 21opeq12i 3554 . . . . 5 ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ = ⟨{𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q (𝐹𝑎)}, {𝑢Q ∣ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
238, 22eqtri 2060 . . . 4 𝐿 = ⟨{𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q (𝐹𝑎)}, {𝑢Q ∣ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
241, 2, 7, 23caucvgprlemm 6766 . . 3 (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
25 ssrab2 3025 . . . . . 6 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)} ⊆ Q
26 nqex 6461 . . . . . . 7 Q ∈ V
2726elpw2 3911 . . . . . 6 ({𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)} ∈ 𝒫 Q ↔ {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)} ⊆ Q)
2825, 27mpbir 134 . . . . 5 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)} ∈ 𝒫 Q
29 ssrab2 3025 . . . . . 6 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢} ⊆ Q
3026elpw2 3911 . . . . . 6 ({𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢} ∈ 𝒫 Q ↔ {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢} ⊆ Q)
3129, 30mpbir 134 . . . . 5 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢} ∈ 𝒫 Q
32 opelxpi 4376 . . . . 5 (({𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)} ∈ 𝒫 Q ∧ {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢} ∈ 𝒫 Q) → ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ ∈ (𝒫 Q × 𝒫 Q))
3328, 31, 32mp2an 402 . . . 4 ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ ∈ (𝒫 Q × 𝒫 Q)
348, 33eqeltri 2110 . . 3 𝐿 ∈ (𝒫 Q × 𝒫 Q)
3524, 34jctil 295 . 2 (𝜑 → (𝐿 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿))))
361, 2, 7, 23caucvgprlemrnd 6771 . . 3 (𝜑 → (∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))))
37 breq1 3767 . . . . . . 7 (𝑛 = 𝑐 → (𝑛 <N 𝑘𝑐 <N 𝑘))
38 fveq2 5178 . . . . . . . . 9 (𝑛 = 𝑐 → (𝐹𝑛) = (𝐹𝑐))
39 opeq1 3549 . . . . . . . . . . . 12 (𝑛 = 𝑐 → ⟨𝑛, 1𝑜⟩ = ⟨𝑐, 1𝑜⟩)
4039eceq1d 6142 . . . . . . . . . . 11 (𝑛 = 𝑐 → [⟨𝑛, 1𝑜⟩] ~Q = [⟨𝑐, 1𝑜⟩] ~Q )
4140fveq2d 5182 . . . . . . . . . 10 (𝑛 = 𝑐 → (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))
4241oveq2d 5528 . . . . . . . . 9 (𝑛 = 𝑐 → ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) = ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )))
4338, 42breq12d 3777 . . . . . . . 8 (𝑛 = 𝑐 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ↔ (𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))))
4438, 41oveq12d 5530 . . . . . . . . 9 (𝑛 = 𝑐 → ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) = ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )))
4544breq2d 3776 . . . . . . . 8 (𝑛 = 𝑐 → ((𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ↔ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))))
4643, 45anbi12d 442 . . . . . . 7 (𝑛 = 𝑐 → (((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ))) ↔ ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )))))
4737, 46imbi12d 223 . . . . . 6 (𝑛 = 𝑐 → ((𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))) ↔ (𝑐 <N 𝑘 → ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))))))
48 breq2 3768 . . . . . . 7 (𝑘 = 𝑑 → (𝑐 <N 𝑘𝑐 <N 𝑑))
49 fveq2 5178 . . . . . . . . . 10 (𝑘 = 𝑑 → (𝐹𝑘) = (𝐹𝑑))
5049oveq1d 5527 . . . . . . . . 9 (𝑘 = 𝑑 → ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) = ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )))
5150breq2d 3776 . . . . . . . 8 (𝑘 = 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) ↔ (𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))))
5249breq1d 3774 . . . . . . . 8 (𝑘 = 𝑑 → ((𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) ↔ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))))
5351, 52anbi12d 442 . . . . . . 7 (𝑘 = 𝑑 → (((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))) ↔ ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) ∧ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )))))
5448, 53imbi12d 223 . . . . . 6 (𝑘 = 𝑑 → ((𝑐 <N 𝑘 → ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )))) ↔ (𝑐 <N 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) ∧ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))))))
5547, 54cbvral2v 2541 . . . . 5 (∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))) ↔ ∀𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) ∧ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )))))
562, 55sylib 127 . . . 4 (𝜑 → ∀𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) ∧ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )))))
571, 56, 7, 23caucvgprlemdisj 6772 . . 3 (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
581, 2, 7, 23caucvgprlemloc 6773 . . 3 (𝜑 → ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
5936, 57, 583jca 1084 . 2 (𝜑 → ((∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))) ∧ ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) ∧ ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))))
60 elnp1st2nd 6574 . 2 (𝐿P ↔ ((𝐿 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿))) ∧ ((∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))) ∧ ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) ∧ ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))))
6135, 59, 60sylanbrc 394 1 (𝜑𝐿P)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wb 98  wo 629  w3a 885   = wceq 1243  wcel 1393  wral 2306  wrex 2307  {crab 2310  wss 2917  𝒫 cpw 3359  cop 3378   class class class wbr 3764   × cxp 4343  wf 4898  cfv 4902  (class class class)co 5512  1st c1st 5765  2nd c2nd 5766  1𝑜c1o 5994  [cec 6104  Ncnpi 6370   <N clti 6373   ~Q ceq 6377  Qcnq 6378   +Q cplq 6380  *Qcrq 6382   <Q cltq 6383  Pcnp 6389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-inp 6564
This theorem is referenced by:  caucvgprlemladdfu  6775  caucvgprlemladdrl  6776  caucvgprlem1  6777  caucvgprlem2  6778  caucvgpr  6780
  Copyright terms: Public domain W3C validator