ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemm GIF version

Theorem cauappcvgprlemm 6741
Description: Lemma for cauappcvgpr 6758. The putative limit is inhabited. (Contributed by Jim Kingdon, 18-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemm (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐿,𝑟,𝑠   𝐴,𝑠,𝑝   𝐹,𝑙,𝑢,𝑝,𝑞,𝑟,𝑠   𝜑,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑟,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemm
StepHypRef Expression
1 1nq 6462 . . . . . 6 1QQ
2 cauappcvgpr.bnd . . . . . 6 (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
3 fveq2 5178 . . . . . . . 8 (𝑝 = 1Q → (𝐹𝑝) = (𝐹‘1Q))
43breq2d 3776 . . . . . . 7 (𝑝 = 1Q → (𝐴 <Q (𝐹𝑝) ↔ 𝐴 <Q (𝐹‘1Q)))
54rspcv 2652 . . . . . 6 (1QQ → (∀𝑝Q 𝐴 <Q (𝐹𝑝) → 𝐴 <Q (𝐹‘1Q)))
61, 2, 5mpsyl 59 . . . . 5 (𝜑𝐴 <Q (𝐹‘1Q))
7 ltrelnq 6461 . . . . . . 7 <Q ⊆ (Q × Q)
87brel 4392 . . . . . 6 (𝐴 <Q (𝐹‘1Q) → (𝐴Q ∧ (𝐹‘1Q) ∈ Q))
98simpld 105 . . . . 5 (𝐴 <Q (𝐹‘1Q) → 𝐴Q)
106, 9syl 14 . . . 4 (𝜑𝐴Q)
11 halfnqq 6506 . . . 4 (𝐴Q → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
1210, 11syl 14 . . 3 (𝜑 → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
13 simplr 482 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠Q)
142ad2antrr 457 . . . . . . . . 9 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
15 fveq2 5178 . . . . . . . . . . . 12 (𝑝 = 𝑠 → (𝐹𝑝) = (𝐹𝑠))
1615breq2d 3776 . . . . . . . . . . 11 (𝑝 = 𝑠 → (𝐴 <Q (𝐹𝑝) ↔ 𝐴 <Q (𝐹𝑠)))
1716rspcv 2652 . . . . . . . . . 10 (𝑠Q → (∀𝑝Q 𝐴 <Q (𝐹𝑝) → 𝐴 <Q (𝐹𝑠)))
1817ad2antlr 458 . . . . . . . . 9 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → (∀𝑝Q 𝐴 <Q (𝐹𝑝) → 𝐴 <Q (𝐹𝑠)))
1914, 18mpd 13 . . . . . . . 8 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝐴 <Q (𝐹𝑠))
20 breq1 3767 . . . . . . . . 9 ((𝑠 +Q 𝑠) = 𝐴 → ((𝑠 +Q 𝑠) <Q (𝐹𝑠) ↔ 𝐴 <Q (𝐹𝑠)))
2120adantl 262 . . . . . . . 8 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ((𝑠 +Q 𝑠) <Q (𝐹𝑠) ↔ 𝐴 <Q (𝐹𝑠)))
2219, 21mpbird 156 . . . . . . 7 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → (𝑠 +Q 𝑠) <Q (𝐹𝑠))
23 oveq2 5520 . . . . . . . . 9 (𝑞 = 𝑠 → (𝑠 +Q 𝑞) = (𝑠 +Q 𝑠))
24 fveq2 5178 . . . . . . . . 9 (𝑞 = 𝑠 → (𝐹𝑞) = (𝐹𝑠))
2523, 24breq12d 3777 . . . . . . . 8 (𝑞 = 𝑠 → ((𝑠 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑠) <Q (𝐹𝑠)))
2625rspcev 2656 . . . . . . 7 ((𝑠Q ∧ (𝑠 +Q 𝑠) <Q (𝐹𝑠)) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
2713, 22, 26syl2anc 391 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
28 oveq1 5519 . . . . . . . . 9 (𝑙 = 𝑠 → (𝑙 +Q 𝑞) = (𝑠 +Q 𝑞))
2928breq1d 3774 . . . . . . . 8 (𝑙 = 𝑠 → ((𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
3029rexbidv 2327 . . . . . . 7 (𝑙 = 𝑠 → (∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
31 cauappcvgpr.lim . . . . . . . . 9 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
3231fveq2i 5181 . . . . . . . 8 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
33 nqex 6459 . . . . . . . . . 10 Q ∈ V
3433rabex 3901 . . . . . . . . 9 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
3533rabex 3901 . . . . . . . . 9 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
3634, 35op1st 5773 . . . . . . . 8 (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
3732, 36eqtri 2060 . . . . . . 7 (1st𝐿) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
3830, 37elrab2 2700 . . . . . 6 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
3913, 27, 38sylanbrc 394 . . . . 5 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠 ∈ (1st𝐿))
4039ex 108 . . . 4 ((𝜑𝑠Q) → ((𝑠 +Q 𝑠) = 𝐴𝑠 ∈ (1st𝐿)))
4140reximdva 2421 . . 3 (𝜑 → (∃𝑠Q (𝑠 +Q 𝑠) = 𝐴 → ∃𝑠Q 𝑠 ∈ (1st𝐿)))
4212, 41mpd 13 . 2 (𝜑 → ∃𝑠Q 𝑠 ∈ (1st𝐿))
43 cauappcvgpr.f . . . . . 6 (𝜑𝐹:QQ)
441a1i 9 . . . . . 6 (𝜑 → 1QQ)
4543, 44ffvelrnd 5303 . . . . 5 (𝜑 → (𝐹‘1Q) ∈ Q)
46 addclnq 6471 . . . . 5 (((𝐹‘1Q) ∈ Q ∧ 1QQ) → ((𝐹‘1Q) +Q 1Q) ∈ Q)
4745, 44, 46syl2anc 391 . . . 4 (𝜑 → ((𝐹‘1Q) +Q 1Q) ∈ Q)
48 addclnq 6471 . . . 4 ((((𝐹‘1Q) +Q 1Q) ∈ Q ∧ 1QQ) → (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ Q)
4947, 44, 48syl2anc 391 . . 3 (𝜑 → (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ Q)
50 ltaddnq 6503 . . . . . 6 ((((𝐹‘1Q) +Q 1Q) ∈ Q ∧ 1QQ) → ((𝐹‘1Q) +Q 1Q) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q))
5147, 44, 50syl2anc 391 . . . . 5 (𝜑 → ((𝐹‘1Q) +Q 1Q) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q))
52 fveq2 5178 . . . . . . . 8 (𝑞 = 1Q → (𝐹𝑞) = (𝐹‘1Q))
53 id 19 . . . . . . . 8 (𝑞 = 1Q𝑞 = 1Q)
5452, 53oveq12d 5530 . . . . . . 7 (𝑞 = 1Q → ((𝐹𝑞) +Q 𝑞) = ((𝐹‘1Q) +Q 1Q))
5554breq1d 3774 . . . . . 6 (𝑞 = 1Q → (((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q) ↔ ((𝐹‘1Q) +Q 1Q) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)))
5655rspcev 2656 . . . . 5 ((1QQ ∧ ((𝐹‘1Q) +Q 1Q) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q))
5744, 51, 56syl2anc 391 . . . 4 (𝜑 → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q))
58 breq2 3768 . . . . . 6 (𝑢 = (((𝐹‘1Q) +Q 1Q) +Q 1Q) → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)))
5958rexbidv 2327 . . . . 5 (𝑢 = (((𝐹‘1Q) +Q 1Q) +Q 1Q) → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)))
6031fveq2i 5181 . . . . . 6 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
6134, 35op2nd 5774 . . . . . 6 (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
6260, 61eqtri 2060 . . . . 5 (2nd𝐿) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
6359, 62elrab2 2700 . . . 4 ((((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ (2nd𝐿) ↔ ((((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ Q ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)))
6449, 57, 63sylanbrc 394 . . 3 (𝜑 → (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ (2nd𝐿))
65 eleq1 2100 . . . 4 (𝑟 = (((𝐹‘1Q) +Q 1Q) +Q 1Q) → (𝑟 ∈ (2nd𝐿) ↔ (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)))
6665rspcev 2656 . . 3 (((((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ Q ∧ (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)) → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
6749, 64, 66syl2anc 391 . 2 (𝜑 → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
6842, 67jca 290 1 (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wcel 1393  wral 2306  wrex 2307  {crab 2310  cop 3378   class class class wbr 3764  wf 4898  cfv 4902  (class class class)co 5512  1st c1st 5765  2nd c2nd 5766  Qcnq 6376  1Qc1q 6377   +Q cplq 6378   <Q cltq 6381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6400  df-pli 6401  df-mi 6402  df-lti 6403  df-plpq 6440  df-mpq 6441  df-enq 6443  df-nqqs 6444  df-plqqs 6445  df-mqqs 6446  df-1nqqs 6447  df-rq 6448  df-ltnqqs 6449
This theorem is referenced by:  cauappcvgprlemcl  6749
  Copyright terms: Public domain W3C validator