ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemlo GIF version

Theorem resqrexlemlo 9611
Description: Lemma for resqrex 9624. A (variable) lower bound for each term of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemlo ((𝜑𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹𝑁))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemlo
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5520 . . . . . 6 (𝑤 = 1 → (2↑𝑤) = (2↑1))
21oveq2d 5528 . . . . 5 (𝑤 = 1 → (1 / (2↑𝑤)) = (1 / (2↑1)))
3 fveq2 5178 . . . . 5 (𝑤 = 1 → (𝐹𝑤) = (𝐹‘1))
42, 3breq12d 3777 . . . 4 (𝑤 = 1 → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑1)) < (𝐹‘1)))
54imbi2d 219 . . 3 (𝑤 = 1 → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑1)) < (𝐹‘1))))
6 oveq2 5520 . . . . . 6 (𝑤 = 𝑘 → (2↑𝑤) = (2↑𝑘))
76oveq2d 5528 . . . . 5 (𝑤 = 𝑘 → (1 / (2↑𝑤)) = (1 / (2↑𝑘)))
8 fveq2 5178 . . . . 5 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
97, 8breq12d 3777 . . . 4 (𝑤 = 𝑘 → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑𝑘)) < (𝐹𝑘)))
109imbi2d 219 . . 3 (𝑤 = 𝑘 → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑𝑘)) < (𝐹𝑘))))
11 oveq2 5520 . . . . . 6 (𝑤 = (𝑘 + 1) → (2↑𝑤) = (2↑(𝑘 + 1)))
1211oveq2d 5528 . . . . 5 (𝑤 = (𝑘 + 1) → (1 / (2↑𝑤)) = (1 / (2↑(𝑘 + 1))))
13 fveq2 5178 . . . . 5 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
1412, 13breq12d 3777 . . . 4 (𝑤 = (𝑘 + 1) → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1))))
1514imbi2d 219 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))))
16 oveq2 5520 . . . . . 6 (𝑤 = 𝑁 → (2↑𝑤) = (2↑𝑁))
1716oveq2d 5528 . . . . 5 (𝑤 = 𝑁 → (1 / (2↑𝑤)) = (1 / (2↑𝑁)))
18 fveq2 5178 . . . . 5 (𝑤 = 𝑁 → (𝐹𝑤) = (𝐹𝑁))
1917, 18breq12d 3777 . . . 4 (𝑤 = 𝑁 → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑𝑁)) < (𝐹𝑁)))
2019imbi2d 219 . . 3 (𝑤 = 𝑁 → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑𝑁)) < (𝐹𝑁))))
21 2cnd 7988 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
2221exp1d 9376 . . . . . . 7 (𝜑 → (2↑1) = 2)
23 2rp 8588 . . . . . . 7 2 ∈ ℝ+
2422, 23syl6eqel 2128 . . . . . 6 (𝜑 → (2↑1) ∈ ℝ+)
2524rprecred 8634 . . . . 5 (𝜑 → (1 / (2↑1)) ∈ ℝ)
26 1red 7042 . . . . 5 (𝜑 → 1 ∈ ℝ)
27 resqrexlemex.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
2826, 27readdcld 7055 . . . . 5 (𝜑 → (1 + 𝐴) ∈ ℝ)
2922oveq2d 5528 . . . . . 6 (𝜑 → (1 / (2↑1)) = (1 / 2))
30 halflt1 8142 . . . . . 6 (1 / 2) < 1
3129, 30syl6eqbr 3801 . . . . 5 (𝜑 → (1 / (2↑1)) < 1)
32 resqrexlemex.agt0 . . . . . 6 (𝜑 → 0 ≤ 𝐴)
3326, 27addge01d 7524 . . . . . 6 (𝜑 → (0 ≤ 𝐴 ↔ 1 ≤ (1 + 𝐴)))
3432, 33mpbid 135 . . . . 5 (𝜑 → 1 ≤ (1 + 𝐴))
3525, 26, 28, 31, 34ltletrd 7420 . . . 4 (𝜑 → (1 / (2↑1)) < (1 + 𝐴))
36 resqrexlemex.seq . . . . 5 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
3736, 27, 32resqrexlemf1 9606 . . . 4 (𝜑 → (𝐹‘1) = (1 + 𝐴))
3835, 37breqtrrd 3790 . . 3 (𝜑 → (1 / (2↑1)) < (𝐹‘1))
3923a1i 9 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 2 ∈ ℝ+)
40 nnz 8264 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
4140ad2antlr 458 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 𝑘 ∈ ℤ)
4239, 41rpexpcld 9404 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑𝑘) ∈ ℝ+)
4342rpcnd 8624 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑𝑘) ∈ ℂ)
44 2cnd 7988 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 2 ∈ ℂ)
4542rpap0d 8628 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑𝑘) # 0)
4639rpap0d 8628 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 2 # 0)
4743, 44, 45, 46recdivap2d 7783 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) = (1 / ((2↑𝑘) · 2)))
48 nnnn0 8188 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
4948ad2antlr 458 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 𝑘 ∈ ℕ0)
5044, 49expp1d 9382 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑(𝑘 + 1)) = ((2↑𝑘) · 2))
5150oveq2d 5528 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑(𝑘 + 1))) = (1 / ((2↑𝑘) · 2)))
5247, 51eqtr4d 2075 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) = (1 / (2↑(𝑘 + 1))))
5342rprecred 8634 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑𝑘)) ∈ ℝ)
5436, 27, 32resqrexlemf 9605 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶ℝ+)
5554ffvelrnda 5302 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ+)
5655rpred 8622 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
5756adantr 261 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ)
5827adantr 261 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
5958, 55rerpdivcld 8654 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐴 / (𝐹𝑘)) ∈ ℝ)
6059adantr 261 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐴 / (𝐹𝑘)) ∈ ℝ)
6157, 60readdcld 7055 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((𝐹𝑘) + (𝐴 / (𝐹𝑘))) ∈ ℝ)
62 simpr 103 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑𝑘)) < (𝐹𝑘))
6332adantr 261 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 0 ≤ 𝐴)
6458, 55, 63divge0d 8663 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐴 / (𝐹𝑘)))
6556, 59addge01d 7524 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (0 ≤ (𝐴 / (𝐹𝑘)) ↔ (𝐹𝑘) ≤ ((𝐹𝑘) + (𝐴 / (𝐹𝑘)))))
6664, 65mpbid 135 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ≤ ((𝐹𝑘) + (𝐴 / (𝐹𝑘))))
6766adantr 261 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐹𝑘) ≤ ((𝐹𝑘) + (𝐴 / (𝐹𝑘))))
6853, 57, 61, 62, 67ltletrd 7420 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑𝑘)) < ((𝐹𝑘) + (𝐴 / (𝐹𝑘))))
6953, 61, 39, 68ltdiv1dd 8680 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) < (((𝐹𝑘) + (𝐴 / (𝐹𝑘))) / 2))
7036, 27, 32resqrexlemfp1 9607 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) = (((𝐹𝑘) + (𝐴 / (𝐹𝑘))) / 2))
7170adantr 261 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) = (((𝐹𝑘) + (𝐴 / (𝐹𝑘))) / 2))
7269, 71breqtrrd 3790 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) < (𝐹‘(𝑘 + 1)))
7352, 72eqbrtrrd 3786 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))
7473ex 108 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((1 / (2↑𝑘)) < (𝐹𝑘) → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1))))
7574expcom 109 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ((1 / (2↑𝑘)) < (𝐹𝑘) → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))))
7675a2d 23 . . 3 (𝑘 ∈ ℕ → ((𝜑 → (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝜑 → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))))
775, 10, 15, 20, 38, 76nnind 7930 . 2 (𝑁 ∈ ℕ → (𝜑 → (1 / (2↑𝑁)) < (𝐹𝑁)))
7877impcom 116 1 ((𝜑𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  {csn 3375   class class class wbr 3764   × cxp 4343  cfv 4902  (class class class)co 5512  cmpt2 5514  cr 6888  0cc0 6889  1c1 6890   + caddc 6892   · cmul 6894   < clt 7060  cle 7061   / cdiv 7651  cn 7914  2c2 7964  0cn0 8181  cz 8245  +crp 8583  seqcseq 9211  cexp 9254
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-2 7973  df-n0 8182  df-z 8246  df-uz 8474  df-rp 8584  df-iseq 9212  df-iexp 9255
This theorem is referenced by:  resqrexlemnm  9616
  Copyright terms: Public domain W3C validator