ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressxr Structured version   GIF version

Theorem ressxr 6866
Description: The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ressxr ℝ ⊆ ℝ*

Proof of Theorem ressxr
StepHypRef Expression
1 ssun1 3100 . 2 ℝ ⊆ (ℝ ∪ {+∞, -∞})
2 df-xr 6861 . 2 * = (ℝ ∪ {+∞, -∞})
31, 2sseqtr4i 2972 1 ℝ ⊆ ℝ*
Colors of variables: wff set class
Syntax hints:  cun 2909  wss 2911  {cpr 3368  cr 6710  +∞cpnf 6854  -∞cmnf 6855  *cxr 6856
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-xr 6861
This theorem is referenced by:  rexpssxrxp  6867  rexr  6868  0xr  6869  rexrd  6872  ltrelxr  6877  iooval2  8554  fzval2  8647
  Copyright terms: Public domain W3C validator