ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooval2 GIF version

Theorem iooval2 8784
Description: Value of the open interval function. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
iooval2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iooval2
StepHypRef Expression
1 iooval 8777 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
2 inrab2 3210 . . . 4 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ (ℝ* ∩ ℝ) ∣ (𝐴 < 𝑥𝑥 < 𝐵)}
3 ressxr 7069 . . . . . 6 ℝ ⊆ ℝ*
4 sseqin2 3156 . . . . . 6 (ℝ ⊆ ℝ* ↔ (ℝ* ∩ ℝ) = ℝ)
53, 4mpbi 133 . . . . 5 (ℝ* ∩ ℝ) = ℝ
6 rabeq 2551 . . . . 5 ((ℝ* ∩ ℝ) = ℝ → {𝑥 ∈ (ℝ* ∩ ℝ) ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
75, 6ax-mp 7 . . . 4 {𝑥 ∈ (ℝ* ∩ ℝ) ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)}
82, 7eqtri 2060 . . 3 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)}
9 elioore 8781 . . . . . 6 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
109ssriv 2949 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
111, 10syl6eqssr 2996 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ⊆ ℝ)
12 df-ss 2931 . . . 4 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ⊆ ℝ ↔ ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
1311, 12sylib 127 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
148, 13syl5reqr 2087 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
151, 14eqtrd 2072 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  {crab 2310  cin 2916  wss 2917   class class class wbr 3764  (class class class)co 5512  cr 6888  *cxr 7059   < clt 7060  (,)cioo 8757
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-po 4033  df-iso 4034  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-ioo 8761
This theorem is referenced by:  elioo2  8790  ioomax  8817  ioopos  8819  dfioo2  8843
  Copyright terms: Public domain W3C validator