ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnre Structured version   GIF version

Theorem mnfnre 6845
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
mnfnre -∞ ∉ ℝ

Proof of Theorem mnfnre
StepHypRef Expression
1 cnex 6783 . . . . 5 V
2 2pwuninelg 5839 . . . . 5 (ℂ V → ¬ 𝒫 𝒫 ℂ)
31, 2ax-mp 7 . . . 4 ¬ 𝒫 𝒫
4 df-mnf 6840 . . . . . 6 -∞ = 𝒫 +∞
5 df-pnf 6839 . . . . . . 7 +∞ = 𝒫
65pweqi 3355 . . . . . 6 𝒫 +∞ = 𝒫 𝒫
74, 6eqtri 2057 . . . . 5 -∞ = 𝒫 𝒫
87eleq1i 2100 . . . 4 (-∞ ℂ ↔ 𝒫 𝒫 ℂ)
93, 8mtbir 595 . . 3 ¬ -∞
10 recn 6792 . . 3 (-∞ ℝ → -∞ ℂ)
119, 10mto 587 . 2 ¬ -∞
1211nelir 2294 1 -∞ ∉ ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   wcel 1390  wnel 2202  Vcvv 2551  𝒫 cpw 3351   cuni 3571  cc 6689  cr 6690  +∞cpnf 6834  -∞cmnf 6835
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-setind 4220  ax-cnex 6754  ax-resscn 6755
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-nel 2204  df-ral 2305  df-v 2553  df-dif 2914  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-uni 3572  df-pnf 6839  df-mnf 6840
This theorem is referenced by:  renemnf  6851  xrltnr  8451  nltmnf  8459
  Copyright terms: Public domain W3C validator