ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1ex Structured version   GIF version

Theorem 1ex 6780
Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
1ex 1 V

Proof of Theorem 1ex
StepHypRef Expression
1 ax-1cn 6736 . 2 1
21elexi 2561 1 1 V
Colors of variables: wff set class
Syntax hints:   wcel 1390  Vcvv 2551  cc 6669  1c1 6672
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-ext 2019  ax-1cn 6736
This theorem depends on definitions:  df-bi 110  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-v 2553
This theorem is referenced by:  nn1suc  7674  nn0ind-raph  8091  fzprval  8674  fztpval  8675  m1expcl2  8891  1exp  8898
  Copyright terms: Public domain W3C validator