ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndmima GIF version

Theorem ndmima 4702
Description: The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
ndmima 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅)

Proof of Theorem ndmima
StepHypRef Expression
1 df-ima 4358 . 2 (𝐵 “ {𝐴}) = ran (𝐵 ↾ {𝐴})
2 dmres 4632 . . . . 5 dom (𝐵 ↾ {𝐴}) = ({𝐴} ∩ dom 𝐵)
3 incom 3129 . . . . 5 ({𝐴} ∩ dom 𝐵) = (dom 𝐵 ∩ {𝐴})
42, 3eqtri 2060 . . . 4 dom (𝐵 ↾ {𝐴}) = (dom 𝐵 ∩ {𝐴})
5 disjsn 3432 . . . . 5 ((dom 𝐵 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom 𝐵)
65biimpri 124 . . . 4 𝐴 ∈ dom 𝐵 → (dom 𝐵 ∩ {𝐴}) = ∅)
74, 6syl5eq 2084 . . 3 𝐴 ∈ dom 𝐵 → dom (𝐵 ↾ {𝐴}) = ∅)
8 dm0rn0 4552 . . 3 (dom (𝐵 ↾ {𝐴}) = ∅ ↔ ran (𝐵 ↾ {𝐴}) = ∅)
97, 8sylib 127 . 2 𝐴 ∈ dom 𝐵 → ran (𝐵 ↾ {𝐴}) = ∅)
101, 9syl5eq 2084 1 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1243  wcel 1393  cin 2916  c0 3224  {csn 3375  dom cdm 4345  ran crn 4346  cres 4347  cima 4348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-cnv 4353  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358
This theorem is referenced by:  fvun1  5239
  Copyright terms: Public domain W3C validator