Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ndmima | GIF version |
Description: The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.) |
Ref | Expression |
---|---|
ndmima | ⊢ (¬ 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4358 | . 2 ⊢ (𝐵 “ {𝐴}) = ran (𝐵 ↾ {𝐴}) | |
2 | dmres 4632 | . . . . 5 ⊢ dom (𝐵 ↾ {𝐴}) = ({𝐴} ∩ dom 𝐵) | |
3 | incom 3129 | . . . . 5 ⊢ ({𝐴} ∩ dom 𝐵) = (dom 𝐵 ∩ {𝐴}) | |
4 | 2, 3 | eqtri 2060 | . . . 4 ⊢ dom (𝐵 ↾ {𝐴}) = (dom 𝐵 ∩ {𝐴}) |
5 | disjsn 3432 | . . . . 5 ⊢ ((dom 𝐵 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom 𝐵) | |
6 | 5 | biimpri 124 | . . . 4 ⊢ (¬ 𝐴 ∈ dom 𝐵 → (dom 𝐵 ∩ {𝐴}) = ∅) |
7 | 4, 6 | syl5eq 2084 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐵 → dom (𝐵 ↾ {𝐴}) = ∅) |
8 | dm0rn0 4552 | . . 3 ⊢ (dom (𝐵 ↾ {𝐴}) = ∅ ↔ ran (𝐵 ↾ {𝐴}) = ∅) | |
9 | 7, 8 | sylib 127 | . 2 ⊢ (¬ 𝐴 ∈ dom 𝐵 → ran (𝐵 ↾ {𝐴}) = ∅) |
10 | 1, 9 | syl5eq 2084 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1243 ∈ wcel 1393 ∩ cin 2916 ∅c0 3224 {csn 3375 dom cdm 4345 ran crn 4346 ↾ cres 4347 “ cima 4348 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-xp 4351 df-cnv 4353 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 |
This theorem is referenced by: fvun1 5239 |
Copyright terms: Public domain | W3C validator |