![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relcnv | GIF version |
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
relcnv | ⊢ Rel ◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 4353 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
2 | 1 | relopabi 4463 | 1 ⊢ Rel ◡𝐴 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3764 ◡ccnv 4344 Rel wrel 4350 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-opab 3819 df-xp 4351 df-rel 4352 df-cnv 4353 |
This theorem is referenced by: relbrcnvg 4704 cnvsym 4708 intasym 4709 asymref 4710 cnvopab 4726 cnv0 4727 cnvdif 4730 dfrel2 4771 cnvcnv 4773 cnvsn0 4789 cnvcnvsn 4797 resdm2 4811 coi2 4837 coires1 4838 cnvssrndm 4842 unidmrn 4850 cnvexg 4855 cnviinm 4859 funi 4932 funcnvsn 4945 funcnv2 4959 funcnveq 4962 fcnvres 5073 f1cnvcnv 5100 f1ompt 5320 fliftcnv 5435 cnvf1o 5846 reldmtpos 5868 dmtpos 5871 rntpos 5872 dftpos3 5877 dftpos4 5878 tpostpos 5879 tposf12 5884 ercnv 6127 |
Copyright terms: Public domain | W3C validator |