ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpostpos2 Structured version   GIF version

Theorem tpostpos2 5821
Description: Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
tpostpos2 ((Rel 𝐹 Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹)

Proof of Theorem tpostpos2
StepHypRef Expression
1 tpostpos 5820 . 2 tpos tpos 𝐹 = (𝐹 ∩ (((V × V) ∪ {∅}) × V))
2 relrelss 4787 . . . 4 ((Rel 𝐹 Rel dom 𝐹) ↔ 𝐹 ⊆ ((V × V) × V))
3 ssun1 3100 . . . . . 6 (V × V) ⊆ ((V × V) ∪ {∅})
4 xpss1 4391 . . . . . 6 ((V × V) ⊆ ((V × V) ∪ {∅}) → ((V × V) × V) ⊆ (((V × V) ∪ {∅}) × V))
53, 4ax-mp 7 . . . . 5 ((V × V) × V) ⊆ (((V × V) ∪ {∅}) × V)
6 sstr 2947 . . . . 5 ((𝐹 ⊆ ((V × V) × V) ((V × V) × V) ⊆ (((V × V) ∪ {∅}) × V)) → 𝐹 ⊆ (((V × V) ∪ {∅}) × V))
75, 6mpan2 401 . . . 4 (𝐹 ⊆ ((V × V) × V) → 𝐹 ⊆ (((V × V) ∪ {∅}) × V))
82, 7sylbi 114 . . 3 ((Rel 𝐹 Rel dom 𝐹) → 𝐹 ⊆ (((V × V) ∪ {∅}) × V))
9 df-ss 2925 . . 3 (𝐹 ⊆ (((V × V) ∪ {∅}) × V) ↔ (𝐹 ∩ (((V × V) ∪ {∅}) × V)) = 𝐹)
108, 9sylib 127 . 2 ((Rel 𝐹 Rel dom 𝐹) → (𝐹 ∩ (((V × V) ∪ {∅}) × V)) = 𝐹)
111, 10syl5eq 2081 1 ((Rel 𝐹 Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   = wceq 1242  Vcvv 2551  cun 2909  cin 2910  wss 2911  c0 3218  {csn 3367   × cxp 4286  dom cdm 4288  Rel wrel 4293  tpos ctpos 5800
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-nul 3874  ax-pow 3918  ax-pr 3935  ax-un 4136
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ne 2203  df-ral 2305  df-rex 2306  df-rab 2309  df-v 2553  df-sbc 2759  df-dif 2914  df-un 2916  df-in 2918  df-ss 2925  df-nul 3219  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-opab 3810  df-mpt 3811  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-iota 4810  df-fun 4847  df-fn 4848  df-fv 4853  df-tpos 5801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator