ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-tpos Structured version   GIF version

Definition df-tpos 5801
Description: Define the transposition of a function, which is a function 𝐺 = tpos 𝐹 satisfying 𝐺(x, y) = 𝐹(y, x). (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
df-tpos tpos 𝐹 = (𝐹 ∘ (x (dom 𝐹 ∪ {∅}) ↦ {x}))
Distinct variable group:   x,𝐹

Detailed syntax breakdown of Definition df-tpos
StepHypRef Expression
1 cF . . 3 class 𝐹
21ctpos 5800 . 2 class tpos 𝐹
3 vx . . . 4 setvar x
41cdm 4288 . . . . . 6 class dom 𝐹
54ccnv 4287 . . . . 5 class dom 𝐹
6 c0 3218 . . . . . 6 class
76csn 3367 . . . . 5 class {∅}
85, 7cun 2909 . . . 4 class (dom 𝐹 ∪ {∅})
93cv 1241 . . . . . . 7 class x
109csn 3367 . . . . . 6 class {x}
1110ccnv 4287 . . . . 5 class {x}
1211cuni 3571 . . . 4 class {x}
133, 8, 12cmpt 3809 . . 3 class (x (dom 𝐹 ∪ {∅}) ↦ {x})
141, 13ccom 4292 . 2 class (𝐹 ∘ (x (dom 𝐹 ∪ {∅}) ↦ {x}))
152, 14wceq 1242 1 wff tpos 𝐹 = (𝐹 ∘ (x (dom 𝐹 ∪ {∅}) ↦ {x}))
Colors of variables: wff set class
This definition is referenced by:  tposss  5802  tposssxp  5805  brtpos2  5807  tposfun  5816  dftpos2  5817  dftpos4  5819
  Copyright terms: Public domain W3C validator