Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dftpos2 | GIF version |
Description: Alternate definition of tpos when 𝐹 has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
dftpos2 | ⊢ (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmtpos 5871 | . . 3 ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) | |
2 | 1 | reseq2d 4612 | . 2 ⊢ (Rel dom 𝐹 → (tpos 𝐹 ↾ dom tpos 𝐹) = (tpos 𝐹 ↾ ◡dom 𝐹)) |
3 | reltpos 5865 | . . 3 ⊢ Rel tpos 𝐹 | |
4 | resdm 4649 | . . 3 ⊢ (Rel tpos 𝐹 → (tpos 𝐹 ↾ dom tpos 𝐹) = tpos 𝐹) | |
5 | 3, 4 | ax-mp 7 | . 2 ⊢ (tpos 𝐹 ↾ dom tpos 𝐹) = tpos 𝐹 |
6 | df-tpos 5860 | . . . 4 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
7 | 6 | reseq1i 4608 | . . 3 ⊢ (tpos 𝐹 ↾ ◡dom 𝐹) = ((𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ↾ ◡dom 𝐹) |
8 | resco 4825 | . . 3 ⊢ ((𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ↾ ◡dom 𝐹) = (𝐹 ∘ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡dom 𝐹)) | |
9 | ssun1 3106 | . . . . 5 ⊢ ◡dom 𝐹 ⊆ (◡dom 𝐹 ∪ {∅}) | |
10 | resmpt 4656 | . . . . 5 ⊢ (◡dom 𝐹 ⊆ (◡dom 𝐹 ∪ {∅}) → ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡dom 𝐹) = (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) | |
11 | 9, 10 | ax-mp 7 | . . . 4 ⊢ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡dom 𝐹) = (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) |
12 | 11 | coeq2i 4496 | . . 3 ⊢ (𝐹 ∘ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡dom 𝐹)) = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) |
13 | 7, 8, 12 | 3eqtri 2064 | . 2 ⊢ (tpos 𝐹 ↾ ◡dom 𝐹) = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) |
14 | 2, 5, 13 | 3eqtr3g 2095 | 1 ⊢ (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ∪ cun 2915 ⊆ wss 2917 ∅c0 3224 {csn 3375 ∪ cuni 3580 ↦ cmpt 3818 ◡ccnv 4344 dom cdm 4345 ↾ cres 4347 ∘ ccom 4349 Rel wrel 4350 tpos ctpos 5859 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-sbc 2765 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-fv 4910 df-tpos 5860 |
This theorem is referenced by: tposf12 5884 |
Copyright terms: Public domain | W3C validator |